Skip to main content

Olivier Pringault

Cyanobacteria develop as large, cryptic populations in the topsoil of arid land, where plant cover is restricted, water is scarce and harsh microenvironmental conditions prevail. Here we show that some cyanobacteria can actively move in response to wetting or drying events by migrating to the soil surface or retreating to their refuge below. This ability to follow water, which to our knowledge has not been demonstrated before in microbes, may turn out to be important for microbial terrestrial populations in general. Published in Nature, volume 413, issue 6854, on pages 380 - 1, in 2001.
We studied the migration of cyanobacteria in desert crusts from Las Bárdenas Reales (Spain). The crusts were almost exclusively colonized by the filamentous cyanobacterium Oscillatoria, which formed a dense layer approximately 600 microm thick located between 1.5 and 2.1 mm deep. Laboratory and field experiments showed that saturation of the crust with liquid water induced a migration of the cyanobacteria leading to a significant greening of the surface within a few minutes. Under light and rapid evaporation, the green color rapidly disappeared and the crust surface was completely devoid of filaments within 60 min. In contrast, 260 min was required to recover the original white color of the crust when slow evaporation...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.