Skip to main content

Olson, Mark

Much of the boreal forest in western North America and Alaska experiences frequent, stand-replacing wildfires. Secondary succession after fire initiates most forest stands and variations in fire characteristics can have strong effects on pathways of succession. Variations in surface fire severity that influence whether regenerating forests are dominated by coniferous or deciduous species can feedback to influence future fire behaviour because of differences in forest flammability. We used a landscape model of fire and forest dynamics to explore the effects of different scenarios of surface fire severity on subsequent forest succession and potential fire activity in interior Alaska. Model simulations indicated that...
Much of the boreal forest in western North America and Alaska experiences frequent, stand-replacing wildfires. Secondary succession after fire initiates most forest stands and variations in fire characteristics can have strong effects on pathways of succession. Variations in surface fire severity that influence whether regenerating forests are dominated by coniferous or deciduous species can feedback to influence future fire behaviour because of differences in forest flammability. We used a landscape model of fire and forest dynamics to explore the effects of different scenarios of surface fire severity on subsequent forest succession and potential fire activity in interior Alaska. Model simulations indicated that...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.