Skip to main content

P. Dawson

thumbnail
Detection of three very-long-period (VLP) volcanic earthquakes beneath Mammoth Mountain emphasizes that magmatic processes continue to be active beneath this young, eastern California volcano. These VLP earthquakes, which occured in October 1996 and July and August 2000, appear as bell-shaped pulses with durations of one to two minutes on a nearby borehole dilatometer and on the displacement seismogram from a nearby broadband seismometer. They are accompanied by rapid-fire sequences of high-frequency (HF) earthquakes and several long- period (LP) volcanic earthquakes. The limited VLP data are consistent with a CLVD source at a depth of ???3 km beneath the summit, which we interpret as resulting from a slug of fluid...
thumbnail
Following an initial phreatic eruption on 21 December 1994, activity at Popocatepetl has been dominated by fumarolic emissions interspersed with more energetic emissions of ashes and gases. A phase of repetitive dome-building and dome-destroying episodes began in March 1996 and is still ongoing at present. We describe the long-period (LP) seismicity accompanying eruptive activity at Popocatepetl from December 1994 through May 2000, using data from a three-component broadband seismometer located 5 km from the summit crater. The broadband records display a variety of signals, with periods ranging in the band 0.04-90 s. Long-period events and tremor with typical dominant periods in the range 0.3-2.0 s are the most...
Categories: Publication; Types: Citation; Tags: Bulletin of Volcanology
thumbnail
Gas-liquid flows, designed to be analogous to those in volcanic conduits, are generated in the laboratory using organic gas-gum rosin mixtures expanding in a vertically mounted tube. The expanding fluid shows a range of both flow and pressure oscillation behaviors. Weakly supersaturated source liquids produce a low Reynolds number flow with foam expanding from the top surface of a liquid that exhibits zero fluid velocity at the tube wall; i.e., the conventional "no-slip" boundary condition. Pressure oscillations, often with strong long-period characteristics and consistent with longitudinal and radial resonant oscillation modes, are detected in these fluids. Strongly supersaturated source liquids generate more energetic...
thumbnail
The properties of the tremor wave field at Stromboli are analyzed using data from small-aperture arrays of short-period seismometers deployed on the north flank of the volcano. The seismometers are configued in two semi-circular arrays with radii of 60 and 150 m and a linear array with length of 600 m. The data are analyzed using a spatiotemporal correlation technique specifically designed for the study of the stationary stochastic wave field of Rayleigh and Love waves generated by volcanic activity and by scattering sources distributed within the island. The correlation coefficients derived as a function of frequency for the three components of motion clearly define the dispersion characteristics for both Rayleigh...
thumbnail
The wave fields generated by Strombolian activity are investigated using data from small-aperture seismic arrays deployed on the north flank of Stromboli and data from seismic and pressure transducers set up near the summit crater. Measurements of slowness and azimuth as a function of time clearly indicate that the sources of tremor and explosions are located beneath the summit crater at depths shallower than 200 m with occasional bursts of energy originating from sources extending to a depth of 3 km. Slowness, azimuth, and particle motion measurements reveal a complex composition of body and surface waves associated with topography, structure, and source properties. Body waves originating at depths shallower than...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.