Skip to main content

Pacific Islands Water Science Center

thumbnail
The U.S. Geological Survey (USGS), in cooperation with the State of Hawaiʻi Department of Transportation, estimated flood magnitudes for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEP) for unregulated streamgages in Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi, using data through water year 2020. Regression equations which can be used to estimate flood magnitude and associated frequency at ungaged streams were developed. The methods and results of the study are published in a separate report (https://doi.org/10.3133/sir20235014). This data release contains (1) a folder with the PeakFQ output files for each streamgage, ".PRT" and ".EXP" files, for use in...
thumbnail
A sensitivity analysis of groundwater-recharge estimates from a water-budget model was completed for the islands of Oahu and Maui, Hawaii (Johnson and others, 2023). Results of the sensitivity analysis were used to quantify the relative importance of selected model parameters to recharge estimates for three moisture zones (dry, mesic, and wet) on Oahu and Maui. This shapefile contains the boundaries of the moisture zones and boundaries of the model subareas that were used in the model simulations for Oahu. The shapefile attribute information includes the names of the land-cover types assigned to model subareas and the mean annual recharge values determined for the model subareas for the baseline scenario of the...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for a projected climate condition representative of phase 3 of the Coupled Model Intercomparison Project (CMIP3) A1B 2080-99 scenario climate and 2017 land cover, as described in USGS SIR 2019-5064. The water-budget components for each model subarea were computed for the future climate condition using a water-budget model developed by Johnson and others (2018). The 2017 land-cover map developed by Mair (2018) was used to define the land-cover conditions and the model subareas. The shapefile attribute information associated with each subarea (or polygon) present an estimate of mean...
thumbnail
These shapefiles represent the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for a set of eight future climate and land-cover scenarios. The future climate conditions used in the water-budget analyses were derived from two end-of-century downscaled climate projections including (1) a projected future climate condition representative of phase 3 of the Coupled Model Intercomparison Project (CMIP3) A1B 2080-99 scenario climate described in Zhang and others (2016a, 2016b) and (2) a projected future climate condition representative of phase 5 of the Coupled Model Intercomparison Project (CMIP5) Representative Concentration Pathway 8.5 (RCP8.5) 2080-99 scenario...
thumbnail
This data release contains a comma-delimited ascii file of two same-day, discrete discharge measurements made at sites along selected reaches of Waipāhoehoe Stream, Hawai'i on July 16, 2019. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable, nonchanging flow...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.