Skip to main content

Paul E. Misut

thumbnail
A previously developed three-dimensional steady-state groundwater flow model (https://doi.org/10.3133/sir20205091) is used to assist resource managers and planners in developing informed strategies to address nitrogen loading to coastal water bodies of Long Island, New York. Coastal water bodies of Long Island are important economic and recreational resources for the region. Therefore, the U.S. Geological Survey and New York State Department of Environmental Conservation initiated a program to delineate a comprehensive dataset of CAs (or areas contributing groundwater), travel times, and groundwater discharges to streams, lakes, marine-surface waters, and subsea discharge boundaries. The 25-layer regional groundwater-flow...
thumbnail
A regional groundwater-flow model and particle-tracking program were used to delineate areas contributing groundwater to coastal and freshwater bodies and to estimate travel times from the water table to saline water bodies under average conditions from 1968 to 1983 on Long Island, New York. The coastal waters of Long Island are important economic and recreational resources for the region. The coastal water bodies receive freshwater from inflow of both surface water and groundwater, in addition to tidal exchanges of saltwater. Excessive nitrogen inputs associated with development and urbanization in the freshwater recharge areas to coastal water bodies can adversely affect marine and estuarine ecosystems. The results...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the U.S Fish and Wildlife Service, has investigated the hydrology of the Great Dismal Swamp (Swamp) National Wildlife Refuge (Refuge) in Virginia and North Carolina and developed a three-dimensional numerical model to simulate groundwater and surface-water hydrology. The model was developed with MODFLOW-NWT, a USGS numerical groundwater flow modeling program, in combination with the Surface-Water Routing Process, a software package that simulates dynamic surface-water flows, water-control-structure management, and groundwater/surface-water interactions. The steady-state model was calibrated to average spring conditions using automated parameter estimation software...
thumbnail
In 2016, the United States Geological Survey (USGS) began development of a regional-scale numerical model of the Long Island aquifer system, as part of the National Water Quality Assessment (NAWQA) Program. The three-dimensional groundwater-flow model was developed to evaluate 1) responses of the hydrologic system to changes in natural and anthropogenic hydraulic stresses 2) the subsurface distribution of groundwater age, and 3) the regional-scale distribution of groundwater travel times and the source of water to fresh surface waters and coastal receiving waters. The model also provides the groundwater flow components used to define model boundaries for possible inset models used for local-scale analyses. Unconsolidated...
thumbnail
The U.S. Geological Survey, in cooperation with the National Park Service (NPS), developed a three-dimensional groundwater-flow model to simulate climate-change-related changes in depth to the water table and depth to freshwater/saltwater interfaces for the Fire Island National Seashore, New York. An existing SEAWAT three-dimensional variable-density groundwater flow and transport model (https://doi.org/10.3133/sir20095259) was converted to a MODFLOW–NWT three-dimensional finite-difference groundwater model with the Seawater Intrusion (SWI2) package and recalibrated using the UCODE_2005 automatic calibration software. A management goal for the Fire Island National Seashore is to increase the resiliency and capacity...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.