Skip to main content

Phillips, Fred M

A large reservoir of bioavailable nitrogen (up to approximately 10(4) kilograms of nitrogen per hectare, as nitrate) has been previously overlooked in studies of global nitrogen distribution. The reservoir has been accumulating in subsoil zones of arid regions throughout the Holocene. Consideration of the subsoil reservoir raises estimates of vadose-zone nitrogen inventories by 14 to 71% for warm deserts and arid shrublands worldwide and by 3 to 16% globally. Subsoil nitrate accumulation indicates long-term leaching from desert soils, impelling further evaluation of nutrient dynamics in xeric ecosystems. Evidence that subsoil accumulations are readily mobilized raises concern about groundwater contamination after...
Categories: Publication; Types: Citation
A study using multiple techniques provided insight into tectonic influences on ground water systems; the results can help to understand ground water systems in the tectonically active western United States and other parts of the world. Ground water in the San Bernardino Valley (Arizona, United States and Sonora, Mexico) is the main source of water for domestic use, cattle ranching (the primary industry), and the preservation of threatened and endangered species. To improve the understanding of ground water occurrence, movement, and sustainability, an investigation was conducted using a number of complementary methods, including major ion geochemistry, isotope hydrology, analysis of gases dissolved in ground water,...
A large reservoir of bioavailable nitrogen (up to approximately 10(4) kilograms of nitrogen per hectare, as nitrate) has been previously overlooked in studies of global nitrogen distribution. The reservoir has been accumulating in subsoil zones of arid regions throughout the Holocene. Consideration of the subsoil reservoir raises estimates of vadose-zone nitrogen inventories by 14 to 71% for warm deserts and arid shrublands worldwide and by 3 to 16% globally. Subsoil nitrate accumulation indicates long-term leaching from desert soils, impelling further evaluation of nutrient dynamics in xeric ecosystems. Evidence that subsoil accumulations are readily mobilized raises concern about groundwater contamination after...
Categories: Publication; Types: Citation, Journal Citation; Tags: Science
A large reservoir of bioavailable nitrogen (up to approximately 10(4) kilograms of nitrogen per hectare, as nitrate) has been previously overlooked in studies of global nitrogen distribution. The reservoir has been accumulating in subsoil zones of arid regions throughout the Holocene. Consideration of the subsoil reservoir raises estimates of vadose-zone nitrogen inventories by 14 to 71% for warm deserts and arid shrublands worldwide and by 3 to 16% globally. Subsoil nitrate accumulation indicates long-term leaching from desert soils, impelling further evaluation of nutrient dynamics in xeric ecosystems. Evidence that subsoil accumulations are readily mobilized raises concern about groundwater contamination after...
Categories: Publication; Types: Citation
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.