Skip to main content

Pitlick, John

Field data obtained on a nearly contiguous segment of the Colorado River in western Colorado and eastern Utah are used to examine the mechanisms driving downstream changes in channel geometry. Measurements characterizing the bank-full hydraulic geometry, bed material grain size, and average channel gradient were made at closely spaced intervals in 10 alluvial and quasi-alluvial reaches covering 260 km of the river. These data indicate that changes in surface and subsurface grain sizes are small in relation to the change in channel slope: over the full length of the study area, the median grain size of the surface sediment decreases by a factor of a little more than 2, whereas the average channel slope decreases...
We present herein clear field evidence for the persistence of a coarse surface layer in a gravel-bed river during flows capable of transporting all grain sizes present on the channel bed. Detailed field measurements of channel topography and bed surface grain size were made in a gravel-bed reach of the Colorado River prior to a flood in 2003. Runoff produced during the 2003 snowmelt was far above average, resulting in a sustained period of high flow with a peak discharge of 27 m3/s (170% of normal peak flow); all available grain sizes within the study reach were mobilized in this period of time. During the 2003 peak flow, the river avulsed immediately upstream of the study reach, thereby abandoning approximately...
The Boulder Creek Watershed, within the Front Range region of Colorado, is typical of many western watersheds because it is composed of a high-gradient upper reach mostly fed by snowmelt, a substantial change in gradient at the range front, and an urban corridor within the lower gradient section. A stream ecosystem within an urban landscape not only can provide water for municipal, industrial, and agricultural needs, but also can be utilized for recreation, esthetic enjoyment, and wastewater disposal. The purpose of this 26 km bicycle field trip is to explore the hydrology and geochemistry of Boulder and South Boulder Creeks and to discuss topics including flood frequency and hazards, aqueous geochemistry of the...
Summary Relations between seepage flux and hydraulic properties are difficult to quantify in fluvial settings because of the difficulty in measuring these variables in situ. Tests conducted in a 1.5-m diameter by 1.5-m tall sediment-filled tank indicate that hydraulic gradient increased and hydraulic conductivity (K) decreased following the onset of downward seepage but both parameters were little changed following the onset of upward seepage. Reductions in K during downward seepage were more pronounced when surface-water current was sufficient to mobilize sediment on the bed. Averaged ratios of K determined during upward seepage to K determined during downward seepage (Kup/Kdown) through a sand-and-gravel bed increased...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.