Skip to main content

Rice, Kevin J.

Species range limits involve many aspects of evolution and ecology, from species distribution and abundance to the evolution of niches. Theory suggests myriad processes by which range limits arise, including competitive exclusion, Allee effects, and gene swamping; however, most models remain empirically untested. Range limits are correlated with a number of abiotic and biotic factors, but further experimentation is needed to understand underlying mechanisms. Range edges are characterized by increased genetic isolation, genetic differentiation, and variability in individual and population performance, but evidence for decreased abundance and fitness is lacking. Evolution of range limits is understudied in natural...
Species range limits involve many aspects of evolution and ecology, from species distribution and abundance to the evolution of niches. Theory suggests myriad processes by which range limits arise, including competitive exclusion, Allee effects, and gene swamping; however, most models remain empirically untested. Range limits are correlated with a number of abiotic and biotic factors, but further experimentation is needed to understand underlying mechanisms. Range edges are characterized by increased genetic isolation, genetic differentiation, and variability in individual and population performance, but evidence for decreased abundance and fitness is lacking. Evolution of range limits is understudied in natural...
Species range limits involve many aspects of evolution and ecology, from species distribution and abundance to the evolution of niches. Theory suggests myriad processes by which range limits arise, including competitive exclusion, Allee effects, and gene swamping; however, most models remain empirically untested. Range limits are correlated with a number of abiotic and biotic factors, but further experimentation is needed to understand underlying mechanisms. Range edges are characterized by increased genetic isolation, genetic differentiation, and variability in individual and population performance, but evidence for decreased abundance and fitness is lacking. Evolution of range limits is understudied in natural...
Species range limits involve many aspects of evolution and ecology, from species distribution and abundance to the evolution of niches. Theory suggests myriad processes by which range limits arise, including competitive exclusion, Allee effects, and gene swamping; however, most models remain empirically untested. Range limits are correlated with a number of abiotic and biotic factors, but further experimentation is needed to understand underlying mechanisms. Range edges are characterized by increased genetic isolation, genetic differentiation, and variability in individual and population performance, but evidence for decreased abundance and fitness is lacking. Evolution of range limits is understudied in natural...
Species range limits involve many aspects of evolution and ecology, from species distribution and abundance to the evolution of niches. Theory suggests myriad processes by which range limits arise, including competitive exclusion, Allee effects, and gene swamping; however, most models remain empirically untested. Range limits are correlated with a number of abiotic and biotic factors, but further experimentation is needed to understand underlying mechanisms. Range edges are characterized by increased genetic isolation, genetic differentiation, and variability in individual and population performance, but evidence for decreased abundance and fitness is lacking. Evolution of range limits is understudied in natural...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.