Skip to main content

Robert L Runkel

thumbnail
Slug additions are often the most accurate method for determining discharge when traditional current meter or acoustic measurements are unreliable because of high turbulence, rocky streambed, shallow or sheet flow, or the stream is physically inaccessible (e.g., under ice or canyon walls) or unsafe to wade (Zellweger et al., 1989, Kilpatrick and Cobb 1984, Ferranti 2015). The slug addition method for determining discharge requires an injection of a known amount of a single salt and high-frequency downstream measurement of solute concentration to capture the response curve (Kilpatrick and Cobb 1984). A new slug method was developed to determine stream discharge utilizing specific conductance and ionic molal conductivities...
thumbnail
Two synoptic sampling campaigns were conducted near Breckenridge, Colorado, to quantify metal loading to Illinois Gulch, a tributary of the Blue River. The first campaign, conducted in August 2016, was designed to determine the degree to which Illinois Gulch loses water to the underlying mine workings, and to determine the effect of these losses on observed metal loads. The second campaign, conducted in September 2017, was designed to evaluate metal loading within Iron Springs, a subwatershed that was responsible for the majority of the metal loading observed in 2016. A continuous, instream injection of a sodium bromide (NaBr) tracer was initiated at the head of the respective study reaches several days prior to...
thumbnail
Leavenworth Creek, a tributary of South Clear Creek and Clear Creek near Georgetown, Colorado contains copper, lead, and zinc concentrations that are near to or exceed aquatic life standards. The creek drains the Argentine mining district where mining was active primarily in the early 1900s. In the summer of 2012, the U.S. Geological Survey (USGS) conducted a metal-loading study using tracer dilution and spatially detailed synoptic sampling to assess the location and magnitude of copper, lead, manganese, and zinc sources to Leavenworth Creek. Sodium bromide solution was injected into the stream to facilitate calculation of stream discharge at all stream sites using the principles of tracer dilution. Consequently,...
thumbnail
This U.S. Geological Survey (USGS) data release contains data from stream water, groundwater, and soil samples collected in 2019 and 2020 in the North Quartz Creek watershed in central Colorado. Fourteen streambank wells were installed in pairs at seven locations in August 2020 to capture the emerging groundwater from the left bank and right banks (relative to downstream-facing direction) and a synoptic sampling campaign was conducted to quantify metal contributions to the stream. A continuous, instream injection of sodium bromide (NaBr) was initiated at the head of the 5 km study reach several days prior to the synoptic sampling campaign and maintained throughout the duration of the study. Bromide concentrations...
thumbnail
This dataset is a compilation of samples collected from draining mine adits, including water and mineral precipitates, from several mines in California and Colorado. The Golinsky, Copper Bluff, and Afterthought Mines (located in northern California) and the Gold King mine (located in southern Colorado) have historically operated to recover metals including copper, lead, zinc, gold, silver and other resources (Albers and Robertson, 1961; USGS, 2005; USEPA, 2015). Data reported include field parameters, water chemistry, solid phase mineralogy and solid phase chemistry. Water samples collected from the four mine sites in 2019 were analyzed for unfiltered and filtered (0.1-0.45 micrometer) major and trace elements and...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.