Skip to main content

S.K. Panda

thumbnail
Abstract: We present an inverse modeling approach for reconstructing the effective thermal conductivity of snow on a daily basis using air temperature, ground temperature and snow depth measurements. The method is applied to four sites in Alaska. To validate the method we used measured snow densities and snow water equivalents. The modeled thermal conductivities of snow for the two interior Alaska sites have relatively low values and reach their maximum near the end of the snow season, while the conductivities at the two sites on the Alaskan North Slope are higher and reach their maximum earlier in the snow season. We show that the reconstructed daily thermal conductivities allow for more accurate modeling of ground...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0165232X1400038X#): We present an inverse modeling approach for reconstructing the effective thermal conductivity of snow on a daily basis using air temperature, ground temperature and snow depth measurements. The method is applied to four sites in Alaska. To validate the method we used measured snow densities and snow water equivalents. The modeled thermal conductivities of snow for the two interior Alaska sites have relatively low values and reach their maximum near the end of the snow season, while the conductivities at the two sites on the Alaskan North Slope are higher and reach their maximum earlier in the snow season. We show that the reconstructed...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.