Skip to main content
USGS - science for a changing world

South Central CSC

Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/gdj3.47/abstract): Two datasets of soil temperature observations collected at Norman, Oklahoma, USA, were analysed to study horizontal and vertical variability in their observations. The first dataset comprised 15-min resolution soil temperature observations from 20 September 2011 to 18 November 2013 in seven plots across a 10-m transect. In each plot, sensors were located at depths of 5, 10, and 30 cm. All seven plots observed fairly consistent maximum soil temperature observations during the spring, fall, and winter months. Starting in late May, the observed spread in soil temperatures across the 10-m transect increased significantly until August when the...
Categories: Publication; Types: Citation; Tags: South Central CASC
thumbnail
The South Central U.S. encompasses a wide range of ecosystem types and precipitation patterns. Average annual precipitation is less than 10 inches in northwest New Mexico but can exceed 60 inches further east in Louisiana. Much of the region relies on warm-season convective precipitation – that is, highly localized brief but intense periods of rainfall that are common in the summer. This type of precipitation is a significant driver of climate and ecosystem function in the region, but it is also notoriously difficult to predict since it occurs at such small spatial and temporal scales. While global climate models are helpful for understanding and predicting large-scale precipitation trends, they often do not capture...
thumbnail
The threat of droughts and their associated impacts on the landscape and human communities has long been recognized in the United States, especially in high risk areas such as the South Central region. There is ample literature on the effects of long-term climate change and short-term climate variability on the occurrence of droughts. However, it is unclear whether this information meets the needs of relevant stakeholders and actually contributes to reducing the vulnerability or increasing the resilience of communities to droughts. For example, are the methods used to characterize the severity of drought – known as drought indices – effective tools for predicting the actual damage felt by communities? As droughts...
Abstract (from BESjournals): 1. Coastal wetland ecosystems are expected to migrate landwards in response to rising seas. However, due to differences in topography and coastal urbanization, estuaries vary in their ability to accommodate migration. Low‐lying urban areas can constrain migration and lead to wetland loss (i.e. coastal squeeze), especially where existing wetlands cannot keep pace with rising seas via vertical adjustments. In many estuaries, there is a pressing need to identify landward migration corridors and better quantify the potential for landward migration and coastal squeeze. 2. We quantified and compared the area available for landward migration of tidal saline wetlands and the area where urban...
thumbnail
Scientists, planners, policy makers and other decision-makers in the South Central U.S. want to understand the potential impacts of changes in climate, precipitation, and land-use patterns on natural and cultural resources. Though the potential impacts of climate change can be modeled to help decision-makers plan for future conditions, these models rarely incorporate changes in land-use that may occur. Climate change and land-use change are often linked, as shifts in precipitation and temperature can alter patterns in human land-use activities, such as agriculture. This project seeks to address this gap by developing new software tools that enable stakeholders to quickly develop custom, climate-sensitive land-use...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.