Skip to main content

T. Ryan McCarley

Abstract (from http://www.sciencedirect.com/science/article/pii/S0378112716308532): Across the western United States, the three primary drivers of tree mortality and carbon balance are bark beetles, timber harvest, and wildfire. While these agents of forest change frequently overlap, uncertainty remains regarding their interactions and influence on specific subsequent fire effects such as change in canopy cover. Acquisition of pre- and post-fire Light Detection and Ranging (LiDAR) data on the 2012 Pole Creek Fire in central Oregon provided an opportunity to isolate and quantify fire effects coincident with specific agents of change. This study characterizes the influence of pre-fire mountain pine beetle (MPB; Dendroctonus...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0034425716305016): Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots. While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often lacks validation with specific variables of change. Additional uncertainty remains regarding how best to account for environmental variables influencing fire effects (e.g., weather) for which observational data cannot easily be acquired, and whether pre-fire agents of...
Abstract (from CSIRO): Remote sensing products provide a vital understanding of wildfire effects across a landscape, but detection and delineation of low- and mixed-severity fire remain difficult. Although data provided by the Monitoring Trends in Burn Severity (MTBS) project are frequently used to assess severity in the United States, alternative indices can offer improvement in the measurement of low-severity fire effects and would be beneficial for future product development and adoption. This research note evaluated one such alternative, the Mid-Infrared Bi-Spectral Index (MIRBI), which was developed in savannah ecosystems to isolate spectral changes caused by burning and reduce noise from other factors. MIRBI,...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.