Skip to main content

Talbot, Guillaume

Summary Daily and multi-day extreme precipitation events can cause important flooding. Assessment of the future evolution of heavy precipitation is therefore crucial in a context of climate change. Simulation results for Canada from the Canadian Global Climate Model (CGCM3) have been analyzed for 1 to 5-day annual maximum (AM) precipitation events over the 1850–2100 period using simulation series from five ensemble members. Trend analysis showed that daily and multi-day intense precipitation series were stationary over the 1850–1980 period while trends emerged during the period 1980–2005. Probabilities of occurrence of AM precipitation for the various months were also estimated. For the historical climate (1850–1980),...
Summary Daily and multi-day extreme precipitation events can cause important flooding. Assessment of the future evolution of heavy precipitation is therefore crucial in a context of climate change. Simulation results for Canada from the Canadian Global Climate Model (CGCM3) have been analyzed for 1 to 5-day annual maximum (AM) precipitation events over the 1850–2100 period using simulation series from five ensemble members. Trend analysis showed that daily and multi-day intense precipitation series were stationary over the 1850–1980 period while trends emerged during the period 1980–2005. Probabilities of occurrence of AM precipitation for the various months were also estimated. For the historical climate (1850–1980),...
Summary Daily and multi-day extreme precipitation events can cause important flooding. Assessment of the future evolution of heavy precipitation is therefore crucial in a context of climate change. Simulation results for Canada from the Canadian Global Climate Model (CGCM3) have been analyzed for 1 to 5-day annual maximum (AM) precipitation events over the 1850–2100 period using simulation series from five ensemble members. Trend analysis showed that daily and multi-day intense precipitation series were stationary over the 1850–1980 period while trends emerged during the period 1980–2005. Probabilities of occurrence of AM precipitation for the various months were also estimated. For the historical climate (1850–1980),...
Summary Daily and multi-day extreme precipitation events can cause important flooding. Assessment of the future evolution of heavy precipitation is therefore crucial in a context of climate change. Simulation results for Canada from the Canadian Global Climate Model (CGCM3) have been analyzed for 1 to 5-day annual maximum (AM) precipitation events over the 1850–2100 period using simulation series from five ensemble members. Trend analysis showed that daily and multi-day intense precipitation series were stationary over the 1850–1980 period while trends emerged during the period 1980–2005. Probabilities of occurrence of AM precipitation for the various months were also estimated. For the historical climate (1850–1980),...
thumbnail
Summary Daily and multi-day extreme precipitation events can cause important flooding. Assessment of the future evolution of heavy precipitation is therefore crucial in a context of climate change. Simulation results for Canada from the Canadian Global Climate Model (CGCM3) have been analyzed for 1 to 5-day annual maximum (AM) precipitation events over the 1850–2100 period using simulation series from five ensemble members. Trend analysis showed that daily and multi-day intense precipitation series were stationary over the 1850–1980 period while trends emerged during the period 1980–2005. Probabilities of occurrence of AM precipitation for the various months were also estimated. For the historical climate (1850–1980),...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.