Skip to main content
USGS - science for a changing world

Theodore A. Kennedy

thumbnail
Dams throughout western North America have altered thermal regimes in rivers, creating cold, clear “tailwaters” in which trout populations thrive. Ongoing drought in the region has led to highly publicized reductions in reservoir storage and raised concerns about potential reductions in downstream flows. Large changes in riverine thermal regimes may also occur as reservoir water levels drop, yet this potential impact has received far less attention. We analyzed historic water temperature and fish population data to anticipate how trout may respond to future changes in the magnitude and seasonality of river temperatures. We found that summer temperatures were inversely related to reservoir water level, with warm...
thumbnail
Fish populations in the Colorado River downstream from Glen Canyon Dam appear to be limited by the availability of high-quality invertebrate prey. Midge and blackfly production is low and nonnative rainbow trout in Glen Canyon and native fishes in Grand Canyon consume virtually all of the midge and blackfly biomass that is produced annually. In Glen Canyon, the invertebrate assemblage is dominated by nonnative New Zealand mudsnails, the food web has a simple structure, and transfers of energy from the base of the web (algae) to the top of the web (rainbow trout) are inefficient. The food webs in Grand Canyon are more complex relative to Glen Canyon, because, on average, each species in the web is involved in more...
Categories: Publication; Types: Citation; Tags: Fact Sheet
thumbnail
On March 5, 2008, the Department of the Interior began a 60-hour high-flow experiment at Glen Canyon Dam, Arizona, to determine if water releases designed to mimic natural seasonal flooding could be used to improve downstream resources in Glen Canyon National Recreation Area and Grand Canyon National Park. U.S. Geological Survey (USGS) scientists and their cooperators undertook a wide range of physical and biological resource monitoring and research activities before, during, and after the release. Scientists sought to determine whether or not high flows could be used to rebuild Grand Canyon sandbars, create nearshore habitat for the endangered humpback chub, and benefit other resources such as archaeological sites,...
Categories: Publication; Types: Citation; Tags: Fact Sheet
thumbnail
These data were used to examine drivers behind changes in water temperature downriver of dams across the western U.S. from 1995-2015 and the influence of such changes on rainbow trout recruitment and rainbow and brown trout adult length. First, we linked reservoir storage capacity and dam size to the warmest monthly water temperature per water year (WY) to assess the influence of low storage capacity (shallow reservoirs) on downstream water temperature. We then took results from previously published Generalized Linear Mixed Models (GLMM) that assessed the influence of physical and biological predictors (e.g., flow, trout density, reservoir metrics) on trout recruitment and adult size and added mean annual, maximum...
thumbnail
1. Invertebrate drift is a fundamental process in streams and rivers. Studies from laboratory experiments and small streams have identified numerous extrinsic (e.g. discharge, light intensity, water quality) and intrinsic factors (invertebrate life stage, benthic density, behaviour) that govern invertebrate drift concentrations (# m−3), but the factors that govern invertebrate drift in larger rivers remain poorly understood. For example, while large increases or decreases in discharge can lead to large increases in invertebrate drift, the role of smaller, incremental changes in discharge is poorly described. In addition, while we might expect invertebrate drift concentrations to be proportional to benthic densities...
Categories: Publication; Types: Citation; Tags: Freshwater Biology
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.