Skip to main content

U.S. Geological Survey, Landslide Hazards Program

thumbnail
Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. The USGS conducts post-fire debris-flow hazard assessments for select fires in the Western U.S. We use geospatial data related to basin morphometry, burn severity, soil properties, and rainfall characteristics to estimate the probability and volume of debris flows that may occur in response to a design storm.
thumbnail
This dataset represents 25 parallel longitudinal profiles that were extracted from terrestrial lidar point clouds taken during six survey periods. The six lidar surveys were conducted between 7 October 2010 and 8 October 2013. Over that time a colluvial hollow eroded into a fluvial channel. The longitudinal profiles show the topography of the colluvial hollow for each survey period. The width of the original colluvial hollow was approximately 1.25 m, and a longitudinal profile was extracted every 5 cm for the entire length of the hollow, resulting in 25 parallel longitudinal profiles. These data can be used to observe the transition of the colluvial hollow to a fluvial channel and furthermore they show the development...
thumbnail
On January 15, 1997, a landslide of approximately 100,000-m3 from a coastal bluff swept five cars of a freight train into Puget Sound at Woodway, Washington, USA, 25 km north of downtown Seattle. The landslide resulted from failure of a sequence of dense sands and hard silts of glacial and non-glacial origin, including hard, jointed clayey silt that rarely fails in natural slopes. Joints controlled ground-water seepage through the silt and break-up of the landslide mass. During September of 1997, the U.S. Geological Survey began measuring rainfall, ground-water pressures, and ground movement at the bluff where the landslide occurred. The original sensor array comprised a tipping-bucket rain gauge, four extensometers...
thumbnail
We used matched filter detection and multiple-event relocation techniques to characterize the spatiotemporal evolution of the sequence. Our analysis is from the 14 closest seismic stations to the earthquake sequence, which included seven permanent stations from the Montana Regional Seismic Network, one permanent station from the ANSS backbone network and three temporary seismic stations deployed by the USGS within four days after the mainshock. A catalog of 685 well-located earthquakes larger than M 1 occurring Between 5 July and 15 October 2017 were relocated using a hypocentroid decomposition (HD) multiple-event relocation approach. The resulting dataset had an average epicentral and depth uncertainties (90% confidence)...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.