Skip to main content

United States Forest Service, USFS

thumbnail
The LANDFIRE fuel data describe the composition and characteristics of both surface fuel and canopy fuel. Specific products include fire behavior fuel models, canopy bulk density (CBD), canopy base height (CBH), canopy cover (CC), canopy height (CH), and fuel loading models (FLMs). These data may be implemented within models to predict the behavior and effects of wildland fire. These data are useful for strategic fuel treatment prioritization and tactical assessment of fire behavior and effects. DATA SUMMARY: Canopy base height (CBH) describes the lowest point in a stand where there is sufficient available fuel (= .25 in dia.) to propagate fire vertically through the canopy. Specifically, CBH is defined as the lowest...
thumbnail
The LANDFIRE fuel data describe the composition and characteristics of both surface fuel and canopy fuel. Specific products include fire behavior fuel models, canopy bulk density (CBD), canopy base height (CBH), canopy cover (CC), canopy height (CH), and fuel loading models (FLMs). These data may be implemented within models to predict the behavior and effects of wildland fire. These data are useful for strategic fuel treatment prioritization and tactical assessment of fire behavior and effects. DATA SUMMARY: These fire behavior fuel models represent distinct distributions of fuel loadings found among surface fuel components (live and dead), size classes and fuel types. The fuel models are described by the most...
thumbnail
The LANDFIRE fuel data describe the composition and characteristics of both surface fuel and canopy fuel. Specific products include fire behavior fuel models, canopy bulk density (CBD), canopy base height (CBH), canopy cover (CC), canopy height (CH), and fuel loading models (FLMs). These data may be implemented within models to predict the behavior and effects of wildland fire. These data are useful for strategic fuel treatment prioritization and tactical assessment of fire behavior and effects. DATA SUMMARY: Thirteen typical surface fuel arrangements or "collections of fuel properties" (Anderson 1982) were described to serve as input for Rothermel's mathematical surface fire behavior and spread model (Rothermel...
thumbnail
The LANDFIRE existing vegetation layers describe the following elements of existing vegetation for each LANDFIRE mapping zone: existing vegetation type, existing vegetation canopy cover, and existing vegetation height. Vegetation is mapped using predictive landscape models based on extensive field reference data, satellite imagery, biophysical gradient layers, and classification and regression trees. DATA SUMMARY: The existing vegetation type (EVT) data layer represents the current distribution of the terrestrial ecological systems classification developed by NatureServe for the western Hemisphere (http://www.natureserve.org/publications/usEcologicalsystems.jsp). A terrestrial ecological system is defined as a group...
thumbnail
The LANDFIRE existing vegetation layers describe the following elements of existing vegetation for each LANDFIRE mapping zone: existing vegetation type, existing vegetation canopy cover, and existing vegetation height. Vegetation is mapped using predictive landscape models based on extensive field reference data, satellite imagery, biophysical gradient layers, and classification and regression trees. DATA SUMMARY: The existing vegetation cover (EVC) data layer is an important input to LANDFIRE modeling efforts. EVC is generated separately for tree, shrub and herbaceous cover life forms using training data and a series of geospatial data layers. Percentage tree canopy cover training data are generated using digital...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.