Skip to main content

Vitousek, Peter M

Interspecific variation in polyphenol production by plants has been interpreted in terms of defense against herbivores. Several recent lines of evidence suggest that polyphenols also influence the pools and fluxes of inorganic and organic soil nutrients. Such effects could have far-ranging consequences for nutrient competition among and between plants and microbes, and for ecosystem nutrient cycling and retention. The significance of polyphenols for nutrient cycling and plant productivity is still uncertain, but it could provide an alternative or complementary explanation for the variability in polyphenol production by plants. Published in Trends in Ecology & Evolution, volume 15, issue 6, on pages 238 - 243, in...
N limitation to primary production and other ecosystem processes is widespread. To understand the causes and distribution of N limitation, we must understand the controls of biological N fixation. The physiology of this process is reasonably well characterized, but our understanding of ecological controls is sparse, except in a few cultivated ecosystems. We review information on the ecological controls of N fixation in free-living cyanobacteria, vascular plant symbioses, and heterotrophic bacteria, with a view toward developing improved conceptual and simulation models of ecological controls of biological N fixation. A model (Howarth et al. 1999) of cyanobacterial fixation in lakes (where N fixation generally increases...
We evaluated the effects of plant functional group richness on seasonal patterns of soil nitrogen and phosphorus cycling, using serpentine grassland in south San Jose, California. We established experimental plots with four functional types of plants: early-season annual forbs (E), late-season annual forbs (L), nitrogen-fixers (N), and perennial bunchgrasses (P). These groups differ in several traits relevant to nutrient cycling, including phenology, rooting depth, root:shoot ratio, size, and leaf C:N content. Two or three species of each group were planted in single functional group (SFG) treatments, and in two-, three-, and four-way combinations of functional groups. We analyzed available nutrient pool sizes,...
No species can maximize growth, reproduction and competitive ability across all environments, so the success of invasive species is habitat-dependent. Nutrient-rich habitats often experience more invasion than resource-poor habitats, a pattern consistent with traits generally associated with successful invaders (high growth rates, early reproduction and many offspring). However, invaders do colonize resource-poor environments, and the mechanisms that allow their success in these systems are poorly understood. Traits associated with resource conservation are widespread among species adapted to resource-poor environments, and invasive species may succeed in low-resource environments by employing resource conservation...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.