Skip to main content

WARC Data Steward

thumbnail
This set of sixteen Landsat Thematic Mapper (TM)and Operational Land Imager (OLI)(Path 014 and Rows 032 and 033) surface reflectance data sets were collected between 2000 and 2015. This data presents a time-series analysis that uses linear spectral unmixing of composite Normalized Difference Vegetation Index, Normalized Difference Water Index, and Normalized Difference Soil Index data, to estimate the percentages of marsh vegetation, water, and exposed marsh substrate on the New Jersey intracoastal marshes. We used the composition of the marshes in terms of the percentage of marsh vegetation, water, and marsh substrate to produce Marsh Surface Condition Index (MSCI) maps consisting of three classes of marshes: severely...
thumbnail
These are two land cover datasets derived from Landsat Thematic Mapper and Operational Land Imager (spatial resolution 30-m)Path 014 and Rows 032 and 033 surface reflectance data collected on July 14, 2011 and July 19, 2013, before and after Hurricane Sandy made landfall near Brigantine, New Jersey on October 29, 2012. The two land cover data sets provide a means of evaluating the effect of Hurricane Sandy of data sets collected at times that represent or approach peak vegetation growth. The most accurate results of the land cover classification are based on twelve classes, some of which occur adjacent to the marshes but not on the New Jersey intracoastal marshes. Twelve classes were used in the supervised maximum...
thumbnail
This USGS Data Release represents geospatial data sets that were created for the analysis of the effect of Hurricane Sandy on New Jersey Atlantic Coastal Marshes. The following listed image products were generated: 1) Fifteen marsh surface condition index (MSCI) data sets were calculated from yearly summer collections of ETM+ image data from 2000 to 2015. Three classes described the results of the MSCI mapping; classs1-severely impacted, class 2-moderately impacted, and class 3-intact marsh. 2) Marsh change data product using Landsat images of July 14, 2011 (before) and July 19, 2013 (after) Hurricane Sandy is based on the difference in the percentage of vegetation. It shows a pattern of an increasing loss of marsh...
thumbnail
The change detection data is the classified difference in the percentage of vegetation on the July 14, 2011 Landsat Thematic Mapper(TM) data set collected before Hurricane Sandy and the July 19, 2013 Landsat Operational Land Imager (OLI)data set collected after Hurricane Sandy. Hurricane Sandy made landfall near Brigandine, New Jersey on October 29, 2012. The actual difference in the percentage of vegetation is used in the calculation, not the three-class classification that is the basis of the Marsh Surface Condition Index data. The eleven classes consist of five classes (5-20%,>20%-40%,>40%-60%,>60%-80%,>80%)with decreases in the percentage of vegetation cover after Hurricane Sandy, Three classes (5-20%,>20%-40%,>40%-60%)with...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.