Skip to main content

Whitfield, P. H.

Changes in air temperature, precipitation, and, in some cases, glacial runoff affect the timing of river flow in watersheds of western Canada. We present a method to detect streamflow phase shifts in pluvial, nival, and glacial rivers. The Kendall-Theil robust lines yield monotonic trends in normalized sequent 5-day means of runoff in nine river basins of western Canada over the period 1960?2006. In comparison to trends in the timing of the date of annual peak flow and the center of volume, two other less robust metrics often used to infer streamflow timing changes, our approach reveals more detailed structure on the nature of these changes. For instance, our trend analyses reveal extension of the warm hydrological...
Changes in air temperature, precipitation, and, in some cases, glacial runoff affect the timing of river flow in watersheds of western Canada. We present a method to detect streamflow phase shifts in pluvial, nival, and glacial rivers. The Kendall-Theil robust lines yield monotonic trends in normalized sequent 5-day means of runoff in nine river basins of western Canada over the period 1960?2006. In comparison to trends in the timing of the date of annual peak flow and the center of volume, two other less robust metrics often used to infer streamflow timing changes, our approach reveals more detailed structure on the nature of these changes. For instance, our trend analyses reveal extension of the warm hydrological...
Changes in air temperature, precipitation, and, in some cases, glacial runoff affect the timing of river flow in watersheds of western Canada. We present a method to detect streamflow phase shifts in pluvial, nival, and glacial rivers. The Kendall-Theil robust lines yield monotonic trends in normalized sequent 5-day means of runoff in nine river basins of western Canada over the period 1960?2006. In comparison to trends in the timing of the date of annual peak flow and the center of volume, two other less robust metrics often used to infer streamflow timing changes, our approach reveals more detailed structure on the nature of these changes. For instance, our trend analyses reveal extension of the warm hydrological...
thumbnail
Changes in air temperature, precipitation, and, in some cases, glacial runoff affect the timing of river flow in watersheds of western Canada. We present a method to detect streamflow phase shifts in pluvial, nival, and glacial rivers. The Kendall-Theil robust lines yield monotonic trends in normalized sequent 5-day means of runoff in nine river basins of western Canada over the period 1960?2006. In comparison to trends in the timing of the date of annual peak flow and the center of volume, two other less robust metrics often used to infer streamflow timing changes, our approach reveals more detailed structure on the nature of these changes. For instance, our trend analyses reveal extension of the warm hydrological...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.