Skip to main content

Wyatt, Kevin H.

We evaluated the potential for grazers to regulate benthic algal biomass and taxonomic composition in an Alaskan marsh after enrichment with nutrients that are expected to increase in the region with ongoing climate change. We nested caged and uncaged substrates together inside mesocosm enclosures with natural abundances of snails or no snails and with or without nutrient enrichment (NO3 + PO4 + Si). Algal biomass was greater in all nutrient-enriched enclosures than in controls. Algal biomass was greater in enclosures where grazers were present but excluded by a cage than in enclosures where grazers were allowed to graze or where grazers were absent. In the presence of nutrients, grazed communities were dominated...
We investigated how the relative availability of solar radiation in the presence or absence of grazing alters the ability of benthic algae to respond to nutrient enrichment in an Alaskan marsh. We used a factorial mesocosm experiment that included nutrient enrichment (enriched or control), grazing (grazed or ungrazed), and light (unshaded or shaded) to simulate shading by macrophytes early and late in the growing season, respectively. We found stronger effects of grazers and nutrients compared to light on benthic algal biomass and taxonomic composition. Algal biomass increased in nutrient-enriched treatments and was reduced by grazing. Shading did not have an effect on algal biomass or taxonomic composition, but...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.