Skip to main content

Zhuang, Q.

In terrestrial high-latitude regions, observations indicate recent changes in snow cover, permafrost, and soil freeze?thaw transitions due to climate change. These modifications may result in temporal shifts in the growing season and the associated rates of terrestrial productivity. Changes in productivity will influence the ability of these ecosystems to sequester atmospheric CO2. We use the terrestrial ecosystem model (TEM), which simulates the soil thermal regime, in addition to terrestrial carbon (C), nitrogen and water dynamics, to explore these issues over the years 1960?2100 in extratropical regions (30?90°N). Our model simulations show decreases in snow cover and permafrost stability from 1960 to 2100. Decreases...
In terrestrial high-latitude regions, observations indicate recent changes in snow cover, permafrost, and soil freeze?thaw transitions due to climate change. These modifications may result in temporal shifts in the growing season and the associated rates of terrestrial productivity. Changes in productivity will influence the ability of these ecosystems to sequester atmospheric CO2. We use the terrestrial ecosystem model (TEM), which simulates the soil thermal regime, in addition to terrestrial carbon (C), nitrogen and water dynamics, to explore these issues over the years 1960?2100 in extratropical regions (30?90°N). Our model simulations show decreases in snow cover and permafrost stability from 1960 to 2100. Decreases...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.