Reactive oxygen species (ROS) are involved the damage of living organisms under environmental stress including UV radiation. Cyanobacteria, photoautotrophic prokaryotic organisms, also suffer from increasing UV-B due to the depletion of the stratospheric ozone layer. The increased UV-B induces the production of ROS in vivo detected by using the ROS-sensitive probe 2?,7?-dichlorodihydrofluorescein diacetate (DCFH-DA). Ascorbic acid and N-acetyl- -cysteine (NAC) scavenged ROS effectively, while ?-tocopherol acetate or pyrrolidine dithiocarbamate (PDTC) did not. The presence of rose bengal and hypocrellin A increased the ROS level by photodynamic action in the visible light. The presence of the herbicide, 3-(3,4-dichlorophenyl)-1,1-dimethyl [...]