Post-Hurricane Florence Digital Elevation Models of coastal North Carolina
Dates
Publication Date
2021-06-02
Start Date
2018-10-06
End Date
2018-10-08
Citation
Ritchie, A.C., Over, J.R., Kranenburg, C.J., Brown, J.A., Buscombe, D., Sherwood, C.R., Warrick, J.A., and Wernette, P.A, 2021, Aerial photogrammetry data and products of the North Carolina coast—2018-10-06 to 2018-10-08, post-Hurricane Florence: U.S Geological Survey data release, https://doi.org/10.5066/P9CA3D8P.
Summary
This data release presents structure-from-motion (SFM) products derived from aerial imagery surveys with precise Global Navigation Satellite System (GNSS) navigation data flown in a piloted fixed wing aircraft taken along the North Carolina coast in response to Hurricane Florence (available here https://coastal.er.usgs.gov/data-release/doi-P91KB9SF/). USGS researchers use the elevation models and orthorectified imagery to assess future coastal vulnerability, nesting habitats for wildlife, and provide data for hurricane impact models. The products span the coast over both highly developed towns and natural areas, including federal lands. These products represent the coast after Hurricane Florence and cover the Cape Fear area, North [...]
Summary
This data release presents structure-from-motion (SFM) products derived from aerial imagery surveys with precise Global Navigation Satellite System (GNSS) navigation data flown in a piloted fixed wing aircraft taken along the North Carolina coast in response to Hurricane Florence (available here https://coastal.er.usgs.gov/data-release/doi-P91KB9SF/). USGS researchers use the elevation models and orthorectified imagery to assess future coastal vulnerability, nesting habitats for wildlife, and provide data for hurricane impact models. The products span the coast over both highly developed towns and natural areas, including federal lands. These products represent the coast after Hurricane Florence and cover the Cape Fear area, North Carolina to the Virginia border vicinity from October 6-8, 2018. This research is part of the Remote Sensing Coastal Change Project.
Click on title to download individual files attached to this item.
FloSup_2018-10-NC_DEMs.xml “Metadata for Post-Florence DEMs” Original FGDC Metadata
View
30.25 KB
application/fgdc+xml
DEM_example_BrowseImage.jpg “Example height-colored digital elevation model image from 2018-10-07.”
156.28 KB
image/jpeg
20181006_VA_to_Oregon_Inlet_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from the Virginia Border vicinity to Oregon Inlet”
152.75 MB
image/geotiff
20181006_Hatteras_Inlet_to_Ocracoke_Inlet_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from Hatteras Inlet to Ocracoke Inlet”
65.88 MB
image/geotiff
20181006_Ophelia_Inlet_to_Beaufort_Inlet_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from Ophelia Inlet to Beaufort Inlet”
80.61 MB
image/geotiff
20181006_Ocracoke_Inlet_to_Ophelia_Inlet_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from Ocracoke Inlet to Ophelia Inlet”
98.7 MB
image/geotiff
20181006_Oregon_Inlet_to_Hatteras_Inlet_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from Oregon Inlet to Hatteras Inlet”
230.21 MB
image/geotiff
20181007_Oregon_Inlet_to_Hatteras_Inlet_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from Oregon Inlet to Hatteras Inlet”
38.92 MB
image/geotiff
20181007_Hatteras_Inlet_to_Ocracoke_Inlet_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from Hatteras Inlet to Ocracoke Inlet”
56.63 MB
image/geotiff
20181007_Ophelia_Inlet_to_Beaufort_Inlet_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from Ophelia Inlet to Beaufort Inlet”
119.35 MB
image/geotiff
20181007_Ocracoke_Inlet_to_Ophelia_Inlet_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from Ocracoke Inlet to Ophelia Inlet”
138.37 MB
image/geotiff
20181007_New_River_Inlet_to_Oak_Island_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from New River Inlet to Oak Island”
487.59 MB
image/geotiff
20181008_Hatteras_Inlet_to_Ocracoke_Inlet_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from Hatteras Inlet to Ocracoke Inlet”
59.75 MB
image/geotiff
20181008_VA_to_Oregon_Inlet_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from the Virginia Border vicinity to Oregon Inlet”
154.1 MB
image/geotiff
20181008_Oregon_Inlet_to_Hatteras_Inlet_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from Oregon Inlet to Hatteras Inlet”
223.72 MB
image/geotiff
20181007_Beaufort_Inlet_to_Bogue_Inlet_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from Beaufort Inlet to Bogue Inlet”
62.5 MB
image/geotiff
20181007_Bogue_Inlet_to_New_River_Inlet_1m_UTM18N_NAVD88_cog.tif “Digital Elevation Model from Bogue Inlet to New River Inlet”
43.44 MB
image/geotiff
Related External Resources
Type: Related Primary Publication
Kranenburg, C.J., Ritchie, A.C., Brown, J.A., Over, J.R., Buscombe, D., Sherwood, C.R., Warrick, J.A., and Wernette, P.A., 2020, Post-Hurricane Florence aerial imagery: Cape Fear to Duck, North Carolina, October 6–8, 2018: U.S. Geological Survey data release, https://doi.org/10.5066/P91KB9SF.
The digital elevation models (DEMs) estimate the land surface after Hurricane Florence and were created to document interannual changes in shoreline position and coastal morphology in response to storm events using aerial imagery collections and a structure-from-motion (SFM) workflow. These data are intended for science researchers, students, policy makers, and the general public. These data can be used with geographic information systems or other software to identify topographic and shallow-water bathymetric features.
Preview Image
Example height-colored digital elevation model image from 2018-10-07.