A GIS Compilation of Vector Shorelines for Puerto Rico from 2015 to 2018
Dates
Publication Date
2021-11-19
Citation
Heslin, J.L., Henderson, R.E., and Himmelstoss, E.A., 2021, A GIS compilation of vector shorelines for Puerto Rico from 2015 to 2018: U.S. Geological Survey data release, https://doi.org/10.5066/P9AZYW74.
Summary
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the Digital Shoreline Analysis System software to compute their rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release, and other associated products, represent an expansion of the [...]
Summary
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photographs or topographic surveys, and contemporary sources, such as lidar-point clouds and digital elevation models. These shorelines are compiled and analyzed in the Digital Shoreline Analysis System software to compute their rates of change. Keeping a record of historical shoreline positions is an effective method to monitor change over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release, and other associated products, represent an expansion of the USGS national-scale shoreline database to include Puerto Rico and its islands, Vieques and Culebra from 2015 to 2018. The USGS, in cooperation with the Coastal Research and Planning Institute of Puerto Rico—part of the Graduate School of Planning at the University of Puerto Rico, Rio Piedras Campus—has derived and compiled a database of historical shoreline positions using a variety of methods. These historical shoreline data are then used to measure the rate of shoreline change over time.
Click on title to download individual files attached to this item.
PR_Lidar_2015to2018.jpg “Coverage of MHW shoreline from various lidar sources from 2015 to 2018.”
3.4 MB
image/jpeg
Related External Resources
Type: Citation
Farris, A.S., Weber, K.M., Doran, K.S., and List, J.H., 2018, Comparing methods used by the U.S. Geological Survey Coastal and Marine Geology Program for deriving shoreline position from lidar data: U.S. Geological Survey Open-File Report 2018–1121, 13 p., https://doi.org/10.3133/ofr20181121
The shoreline data in this data release are the mean high water datum-based shorelines extracted from lidar data using a contour method and (or) profile method. See metadata for a description of methods used in the process steps.These extracted data are used in conjunction with other compiled shorelines, provided in complementary USGS data releases, to calculate rates of shoreline change.
Preview Image
Coverage of MHW shoreline from various lidar sources from 2015 to 2018.