Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:11705} (X)

51 results (47ms)   

View Results as: JSON ATOM CSV
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
This data set consists of monthly averages of soil and litter properties. Rows are grouped in the following order: year, month, vegetation type, plot ID. Within a single month five plots were sampled within each of the 2 vegetation types (10 plots total). Columns F+ represent individual measurements.
thumbnail
To support floodplain forest research and management actions on the Upper Mississippi River System [UMRS], contiguous forested areas in the UMRS floodplain were developed and a wide range of attributes were created that define basic ecosystem conditions within such forested areas. The data allows users to query on a set of attributes (e.g., size, shape, inundation characteristics, etc…) to visualize the distribution of various ecological conditions. In addition, the data allow for future data analyses of relationships among different ecological conditions and other data, such as animal and plant population distributions. This data set is based upon the 2020 land cover/land use data developed by the Upper Mississippi...
thumbnail
This data set represents initial forest communities developed for Isle Royale National Park. LANDIS-II requires an input data layer that contains the ages of each species cohort present within each cell of the landscape. To develop this layer, we matched the composition of forest inventory plots to a map of forest types, and randomly imputed U.S. Department of Agriculture Forest Inventory plots within each matching forest type
thumbnail
Premise of the study: Consistent with the self-thinning law of plant population ecology, Niklas et al. in 2003 proposed that stem size-density distributions (SDDs) of multispecies forest communities should change in very predictable ways as a function of the effects of past disturbances on average tree size. To date, empirical tests of this hypothesis have not been pursued in floodplain settings. Methods: SDDs were constructed using tree stem-size and density data from forest plots positioned along a flood frequency and duration gradient in the Upper Mississippi River floodplain. Key Results: As flooding (both frequency and duration) increased, several small tree species were eliminated from forest plots and...
thumbnail
Geographic patterns can change through time and/or across space, and these changes can lead to differences in the movement pattern and body condition of organisms, their interactions with each other and their environment, and ultimately lead to population and community-level changes. When quantifying landscape patterns using remotely sensed data, it is important to recognize that each pixel (i.e. picture element) has a temporal and spatial context. A pixel’s temporal context refers to its past and present classification. The spatial context of a pixel depends on the classification of neighbouring pixels, and the size of the area considered as the neighbourhood. Despite the fact that pixels are the basic unit of...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain forests have historically been resilient to the effects of flooding because the tree species that inhabit these ecosystems regenerate and grow quickly following disturbances. However, the intensity and selectivity of ungulate herbivory in floodplains has the potential to modify the community-level effects of flooding by delaying forest recruitment and leaving sites vulnerable to invasive species. We established a series of exclosures along an elevation gradient in an actively recruiting floodplain forest along the Upper Mississippi River prior to three large-magnitude flood events. Pre-flood browsing by Odocoileus virginianus (white-tailed deer) ranged from 20% to 85% of all available stems, and reduced...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...


map background search result map search result map Effects of flood frequency and duration on the allometry of community-level stem size-density distributions in a floodplain forest Interactive effects of flooding and deer (Odocoileus virginianus) browsing on floodplain forest recruitment Curve Fit: a pixel-level raster regression tool for mapping spatial patterns Effects of Flood Inundation and Invasion by Phalaris arundinacea on Nitrogen Cycling in an Upper Mississippi River Floodplain Forest data Floodplain Inundation Attribute Rasters: Mississippi & Illinois Rivers UMRS Floodplain Inundation Attributes - Pool 3 UMRS Floodplain Inundation Attributes - Open River Reach - South - Section 2 UMRS Floodplain Inundation Attributes - Pool 8 UMRS Floodplain Inundation Attributes - Pool 9 UMRS Floodplain Inundation Attributes - Pool 11 UMRS Floodplain Inundation Attributes - Pool 12 UMRS Floodplain Inundation Attributes - Pool 15 UMRS Floodplain Inundation Attributes - Pool 16 UMRS Floodplain Inundation Attributes - Pool 19 UMRS Floodplain Inundation Attributes - Pool 22 UMRS Floodplain Inundation Attributes - Pool 25 UMRS Floodplain Inundation Attributes - Pool 26 Isle Royal National Park (ISRO): Initial Forest Communities of Isle Royale National Park Attributes of Upper Mississippi River System contiguous forest areas - Pool 26 UMRS Floodplain Inundation Attributes - Pool 15 Interactive effects of flooding and deer (Odocoileus virginianus) browsing on floodplain forest recruitment Effects of Flood Inundation and Invasion by Phalaris arundinacea on Nitrogen Cycling in an Upper Mississippi River Floodplain Forest data UMRS Floodplain Inundation Attributes - Pool 8 UMRS Floodplain Inundation Attributes - Pool 3 UMRS Floodplain Inundation Attributes - Pool 16 UMRS Floodplain Inundation Attributes - Pool 12 UMRS Floodplain Inundation Attributes - Pool 9 UMRS Floodplain Inundation Attributes - Pool 22 Attributes of Upper Mississippi River System contiguous forest areas - Pool 26 UMRS Floodplain Inundation Attributes - Pool 11 UMRS Floodplain Inundation Attributes - Pool 25 UMRS Floodplain Inundation Attributes - Pool 19 UMRS Floodplain Inundation Attributes - Open River Reach - South - Section 2 UMRS Floodplain Inundation Attributes - Pool 26 Isle Royal National Park (ISRO): Initial Forest Communities of Isle Royale National Park Effects of flood frequency and duration on the allometry of community-level stem size-density distributions in a floodplain forest Curve Fit: a pixel-level raster regression tool for mapping spatial patterns Floodplain Inundation Attribute Rasters: Mississippi & Illinois Rivers