Filters: Contacts: {oldPartyId:17469} (X)
866 results (122ms)
Filters
Date Range
Extensions Types
Contacts
Categories Tag Types Tag Schemes |
We characterized seafloor sediment conditions near the mouth of the Elwha River from underwater photographs taken every four hours from September 2011 to December 2013. A digital camera was affixed to a tripod that was deployed in approximately 10 meters of water (Tripod location from September 2011 to April 2013: 48.15333, -123.55931; tripod location from April 2013 to December 2013: 48.15407, -123.55444). Each photograph was qualitatively characterized as one of six categories: (1) base, or no sediment; (2) low sediment; (3) medium sediment; (4) high sediment; (5) turbid; or (6) kelp. For base conditions, no sediment was present on the seafloor. Low sediment conditions were characterized by a light dusting of...
Categories: Data;
Types: Citation,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Clallam County,
Elwha River,
Olympic Peninsula,
Remote Sensing,
State of Washington,
Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the response of a delta system to changes in sediment supply. The U.S. Geological Survey (USGS) developed an integrated research program aimed at understanding the ecosystem responses following dam removal. The research program included repeated surveys of beach topography, nearshore bathymetry, and surface sediment grain size to quantify changes in delta morphology...
This data release presents beach topography and nearshore bathymetry data from repeated surveys in northern Monterey Bay, California to document changes in shoreline position and coastal morphology as they relate to episodic (storms), seasonal, and interannual and longer (e.g. El Niño) processes. The ongoing monitoring program was initiated in October 2014 with semi-annual surveys performed in late summer (September or October) and Spring (March). Nearshore bathymetry and topography data were collected along a series of shore-perpendicular transects spaced primarily at 50-250 m intervals between Santa Cruz and Moss Landing, California (fig. 1). The transects were located along sandy stretches of the coastline...
Categories: Data;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Bathymetry and Elevation,
CMGP,
Coastal and Marine Geology Program,
Echo Sounders,
GPS (Global Positioning System),
RBRduo pressure and temperature sensors, mounted on aluminum frames, were moored in shallow (< 6 m) water depths in Skagit and Bellingham Bays, Washington, USA, from December 2017 to February 2018, to capture wave heights and periods. Continuous pressure fluctuations are transformed into surface-wave observations of wave heights, periods, and frequency spectra at 30-minute intervals.
Categories: Data;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: CMGP,
Coastal and Marine Geology Program,
Marine Geology,
Oceans,
PCMSC,
This part of the data release is a spreadsheet including the name, location, and length of sediment cores collected in 2009 offshore from Palos Verdes, California. It is one of seven files included in this U.S. Geological Survey data release that include data from a set of sediment cores acquired from the continental slope, offshore Los Angeles and the Palos Verdes Peninsula, adjacent to the Palos Verdes Fault. Gravity cores were collected by the USGS in 2009 (cruise ID S-I2-09-SC; http://cmgds.marine.usgs.gov/fan_info.php?fan=SI209SC), and vibracores were collected with the Monterey Bay Aquarium Research Institute’s remotely operated vehicle (ROV) Doc Ricketts in 2010 (cruise ID W-1-10-SC; http://cmgds.marine.usgs.gov/fan_info.php?fan=W110SC)....
High-resolution multichannel minisparker and chirp seismic-reflection data were collected in August of 2015 to explore marine geologic hazards of inland waterways of southeastern Alaska. Sub-bottom profiles were acquired in the inland waters between Glacier Bay and Juneau, including Cross Sound and Chatham Strait. High-resolution seismic-reflection profiles were acquired to assess evidence for active seabed faulting and submarine landslide hazards. The data were collected aboard the U.S. Geological Survey R/V Alaskan Gyre. Chirp data were acquired using a tow-fish Edgetech 512 chirp subbottom profiler, and multichannel (mcs) minisparker data were acquired using a 500-Joule minisparker source and a 48-channel Geometrics...
Categories: Data;
Tags: Geophysics
This data release includes approximately 1,032 km of marine single-channel seismic-reflection data collected by the U.S. Geological Survey on a research cruise (USGS survey 2014-632-FA) in July and August, 2014, between Point Sal and Refugio State Beach. The dataset includes 168 profiles, most of which were collected on tracklines roughly perpendicular to the coast at 1 km line spacing; additional profiles were collected on coast-parallel tie lines. These data were acquired to support the California Seafloor Mapping Program and USGS Geologic Hazards projects. Seismic-reflection data were collected using a minisparker system that creates an acoustic signal by discharging an electrical pulse between electrodes and...
Multichannel minisparker and boomer seismic-reflection and chirp sub bottom data were collected by the U.S. Geological Survey in September of 2013 in Port Valdez, Alaska. Data were collected aboard the USGS R/V Alaskan Gyre during field activity G-01-13-GA. Sub-bottom acoustic penetration spans several hundreds of meters and is variable by location. High-resolution multichannel seismic-reflection data were acquired to support the U.S. Geological Survey Alaska coastal and marine hazards project to explore the sedimentary structure of tsunamigenic landslide deposits around an IODP drill site in Port Valdez. These data and information are intended for science researchers, students from elementary through college, policy...
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Geophysics,
Seismology,
Structural Geology
The U.S. Geological Survey (USGS) collected high-resolution multichannel sparker, minisparker and chirp seismic-reflection data in November 2014, from offshore Catalina and Santa Cruz basins. The survey was designed to image faults and folds associated with movement on the faults in offshore southern California, including the Catalina, Catalina Ridge, San Clemente, and San Diego Trough faults. Data were collected aboard the Scripps Institution of Oceanography R/V Robert Gordon Sproul. Subbottom acoustic penetration spans several hundred meters and is variable by location. This data release contains processed digital SEG-Y. The seismic-reflection profiles of bedrock, sediment deposits and tectonic structure provide...
This data release includes the results of analysis of video data conducted by Oregon State University and the geo-habitat interpretation of multibeam echo sounder (MBES) data conducted by the USGS. The data were collected in 2014 and were published in Cochrane and others (2015). This data release accompanies report that describes the project and results in detail (Cochrane and others, 2017). All the data are provided as geographic information system (GIS) files that contain both Esri ArcGIS geotiffs or shapefiles. For those who do not own the full suite of Esri GIS and mapping software, the data can be read using Esri ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html...
Categories: Data;
Tags: Marine Geology
This part of the data release provides the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) 2007 bathymetry data collected in Skagit Bay Washington that is provided as a 1-m resolution TIFF image, as well as a 1-m resolution shaded-relief TIFF image. FGDC metadata is also provided. In 2004, 2005, 2007, and 2010 the USGS, PCMSC collected bathymetry and acoustic backscatter data in Skagit Bay, Washington using an interferometric bathymetric sidescan-sonar system mounded to the USGS R/V Parke Snavely and the USGS R/V Karluk. The research was conducted in coordination with the Swinomish Indian Tribal Community, Skagit River System Cooperative, Skagit Watershed Council, Puget Sound Nearshore...
Categories: Data;
Types: Citation;
Tags: Bathymetry,
Bathymetry,
Bathymetry and Elevation,
CMGP,
Coastal and Marine Geology Program,
High-resolution acoustic backscatter data, bathymetry data, single channel minisparker seismic-reflection data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game in May of 2014 southwest of Chenega Island and southwest of Montague Island, Alaska. Data were collected aboard the Alaska Department of Fish and Game vessel, R/V Solstice, during USGS field activity 2014-622-FA, using a pole mounted 100-kHz Reson 7111 multibeam echosounder, a 500 Joule SIG 2-mille minisparker sound source and a single channel streamer.
This portion of the data release presents a digital surface model (DSM) and hillshade of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta. The DSM has a resolution of 10 centimeters per-pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise in the original imagery have not been removed. The raw imagery used to create this DSM was...
This portion of the data release presents a digital surface model (DSM) and hillshade image of the intertidal zone at Lone Tree Point, Kiket Bay, WA. The DSM has a resolution of 4 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-05. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise in the original imagery have not been removed. The raw imagery used to create the DSM was acquired using a UAS fitted with a Ricoh...
An unmanned aerial system (UAS) was used to acquire high-resolution imagery of the intertidal zone at West Whidbey Island, Washington on June 4, 2019. This imagery was processed using structure-from-motion (SfM) photogrammetric techniques to derive a high-resolution digital surface model (DSM), orthomosaic imagery, and topographic point clouds. In order to maximize the extent of the subaerially exposed area, the survey was timed to coincide with a spring low tide occurring at approximately 18:02 Universal Coordinated Time (UTC) (11:02 Pacific Daylight Time (PDT)), with a predicted water level of -0.74 meters below mean lower-low water (MLLW) at the Sunset Beach NOAA subordinate tide station (station ID 9447951)....
Tags: Geomorphology,
Remote Sensing
This portion of the data release presents a digital surface model (DSM) and hillshade image of the intertidal zone at West Whidbey Island, WA. The DSM has a resolution of 4 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-04. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise in the original imagery have not been removed. The raw imagery used to create the DSM was acquired using a UAS fitted with a Ricoh GR II...
Chirp data were collected by the U.S. Geological Survey in September of 2013 in Port Valdez, Alaska. Data were collected aboard the USGS R/V Alaskan Gyre during field activity G-01-13-GA, using an EdgeTech SB-512i sub-bottom profiler. Sub-bottom acoustic penetration spans several tens of meters and is variable by location.
Presented here is a point cloud collected by the U.S. Geological Survey (USGS) using an oblique plane-mounted camera system, covering the area of the Mud Creek landslide on California State Route 1 (SR1), Mud Creek, Big Sur, California. The point cloud is referenced to previously published lidar data and contains RGB information as well as XYZ. Point cloud coordinates are in NAD83 UTM Zone 10 meters. Imagery was collected with a Nikon D800 camera in RAW format and processed using structure-from-motion photogrammetry with Agisoft PhotoScan version 1.2.8 through 1.3.2. Pointclouds were clipped to an AOI using LASTools. The AOI was created from a KMZ in Google Earth and transformed to a shapefile using ArcMap 10.5.
Geochemical analyses of authigenic carbonates, bivalves, and pore fluids were performed on samples collected from seep fields along the Queen Charlotte Fault, a right lateral transform boundary that separates the Pacific and North American tectonic plates. Samples were collected using grab samplers and piston cores, and were collected during three different research cruises in 2011, 2015, and 2017.
Categories: Data;
Tags: CMHRP,
Coastal and Marine Hazards and Resources Program,
Haida Gwaii,
PCMSC,
Pacific Coastal and Marine Science Center,
|
![]() |