Skip to main content
Advanced Search

Filters: Contacts: Davis, J A (X)

29 results (98ms)   

View Results as: JSON ATOM CSV
The adsorption of uranyl on standard Georgia kaolinites (KGa-1 and KGa-1B) was studied as a function of pH (3–10), total U (1 and 10 μmol/l), and mass loading of clay (4 and 40 g/l). The uptake of uranyl in air-equilibrated systems increased with pH and reached a maximum in the near-neutral pH range. At higher pH values, the sorption decreased due to the presence of aqueous uranyl carbonate complexes. One kaolinite sample was examined after the uranyl uptake experiments by transmission electron microscopy (TEM), using energy dispersive X-ray spectroscopy (EDS) to determine the U content. It was found that uranium was preferentially adsorbed by Ti-rich impurity phases (predominantly anatase), which are present in...
We investigated arsenate (As(V)) reactivity and surface speciation on amorphous aluminosilicate mineral (synthetic allophane) surfaces using batch adsorption experiments, powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The adsorption isotherm experiments indicated that As(V) uptake increased with increasing [As(V)]o from 50 to 1000 ?M (i.e., Langmuir type adsorption isotherm) and that the total As adsorption slightly decreased with increasing NaCl concentrations from 0.01 to 0.1 M. Arsenate adsorption was initially (0?10 h) rapid followed by a slow continuum uptake, and the adsorption processes reached the steady state after 720 h. X-ray absorption spectroscopic analyses suggest that As(V)...
Categories: Publication; Types: Citation
Effects of dissolved carbonate on arsenate [As(V)] reactivity and surface speciation at the hematite?water interface were studied as a function of pH and two different partial pressures of carbon dioxide gas [PCO2 = 10-3.5 atm and ?0; CO2-free argon (Ar)] using adsorption kinetics, pseudo-equilibrium adsorption/titration experiments, extended X-ray absorption fine structure spectroscopic (EXAFS) analyses, and surface complexation modeling. Different adsorbed carbonate concentrations, due to the two different atmospheric systems, resulted in an enhanced and/or suppressed extent of As(V) adsorption. As(V) adsorption kinetics [4 g L-1, [As(V)]0 = 1.5 mM and I = 0.01 M NaCl] showed carbonate-enhanced As(V) uptake in...
Categories: Publication; Types: Citation
To study transport and reactions of arsenic under field conditions, a small-scale tracer test was performed in an anoxic, iron-reducing zone of a sandy aquifer at the USGS research site on Cape Cod, Massachusetts, USA. For four weeks, a stream of groundwater with added As(V) (6.7 μM) and bromide (1.6 mM), was injected in order to observe the reduction of As(V) to As(III). Breakthrough of bromide (Br−), As(V), and As(III) as well as additional parameters characterizing the geochemical conditions was observed at various locations downstream of the injection well over a period of 104 days. After a short lag period, nitrate and dissolved oxygen from the injectate oxidized ferrous iron and As(V) became bound to the freshly...
Macro- and molecular-scale knowledge of uranyl (U(VI)) partitioning reactions with soil/sediment mineral components is important in predicting U(VI) transport processes in the vadose zone and aquifers. In this study, U(VI) reactivity and surface speciation on a poorly crystalline aluminosilicate mineral, synthetic imogolite, were investigated using batch adsorption experiments, X-ray absorption spectroscopy (XAS), and surface complexation modeling. U(VI) uptake on imogolite surfaces was greatest at pH ∼7–8 (I = 0.1 M NaNO3 solution, suspension density = 0.4 g/L [U(VI)]i = 0.01–30 μM, equilibration with air). Uranyl uptake decreased with increasing sodium nitrate concentration in the range from 0.02 to 0.5 M. XAS...
Categories: Publication; Types: Citation
X-ray absorption near-edge spectroscopy (XANES) analysis of sorption complexes has the advantages of high sensitivity (10- to 20-fold greater than extended X-ray absorption fine structure [EXAFS] analysis) and relative ease and speed of data collection (because of the short k-space range). It is thus a potentially powerful tool for characterization of environmentally significant surface complexes and precipitates at very low surface coverages. However, quantitative analysis has been limited largely to “fingerprint” comparison with model spectra because of the difficulty of obtaining accurate multiple-scattering amplitudes for small clusters with high confidence. In the present work, calculations of the XANES for...
Categories: Publication; Types: Citation
Adsorption of Ni and Pb on aquifer sediments from Cape Cod, Massachusetts, USA increased with increasing pH and metal-ion concentration. Adsorption could be described quantitatively using a semi-mechanistic surface complexation model (SCM), in which adsorption is described using chemical reactions between metal ions and adsorption sites. Equilibrium reactive transport simulations incorporating the SCMs, formation of metal-ion–EDTA complexes, and either Fe(III)-oxyhydroxide solubility or Zn desorption from sediments identified important factors responsible for trends observed during transport experiments conducted with EDTA complexes of Ni, Zn, and Pb in the Cape Cod aquifer. Dissociation of Pb–EDTA by Fe(III) is...
Chemical conditions were perturbed in an aquifer with an ambient pH of 5.9 and wastewater-derived adsorbed zinc (Zn) and phosphate (P) contamination by injecting a pulse of amended groundwater. The injected groundwater had low concentrations of dissolved Zn and P, a pH value of 4.5 resulting from equilibration with carbon dioxide gas, and added potassium bromide (KBr). Downgradient of the injection, breakthrough of nonreactive Br and total dissolved carbonate concentrations in excess of ambient values (excess TCO2) were accompanied by a decrease in pH values and over twentyfold increases in dissolved Zn concentrations above preinjection values. Peak concentrations of Br and excess TCO2 were followed by slow increases...
Categories: Publication; Types: Citation; Tags: metal ion, mobility, sorption