Skip to main content
Advanced Search

Filters: Contacts: Winterberger, Ken (X)

10 results (31ms)   

View Results as: JSON ATOM CSV
The emergence of a new generation of remote sensing and geopositioning technologies, as well as increased capabilities in image processing, computing, and inferential techniques, have enabled the development and implementation of increasingly efficient and cost-effective multilevel sampling designs for forest inventory. In this paper, we (i) describe the conceptual basis of multilevel sampling, (ii) provide a detailed review of several previously implemented multilevel inventory designs, (iii) describe several important technical considerations that can influence the efficiency of a multilevel sampling design, and (iv) demonstrate the application of a modern multilevel sampling approach for estimating the forest...
The emergence of a new generation of remote sensing and geopositioning technologies, as well as increased capabilities in image processing, computing, and inferential techniques, have enabled the development and implementation of increasingly efficient and cost-effective multilevel sampling designs for forest inventory. In this paper, we (i) describe the conceptual basis of multilevel sampling, (ii) provide a detailed review of several previously implemented multilevel inventory designs, (iii) describe several important technical considerations that can influence the efficiency of a multilevel sampling design, and (iv) demonstrate the application of a modern multilevel sampling approach for estimating the forest...
thumbnail
The emergence of a new generation of remote sensing and geopositioning technologies, as well as increased capabilities in image processing, computing, and inferential techniques, have enabled the development and implementation of increasingly efficient and cost-effective multilevel sampling designs for forest inventory. In this paper, we (i) describe the conceptual basis of multilevel sampling, (ii) provide a detailed review of several previously implemented multilevel inventory designs, (iii) describe several important technical considerations that can influence the efficiency of a multilevel sampling design, and (iv) demonstrate the application of a modern multilevel sampling approach for estimating the forest...
The emergence of a new generation of remote sensing and geopositioning technologies, as well as increased capabilities in image processing, computing, and inferential techniques, have enabled the development and implementation of increasingly efficient and cost-effective multilevel sampling designs for forest inventory. In this paper, we (i) describe the conceptual basis of multilevel sampling, (ii) provide a detailed review of several previously implemented multilevel inventory designs, (iii) describe several important technical considerations that can influence the efficiency of a multilevel sampling design, and (iv) demonstrate the application of a modern multilevel sampling approach for estimating the forest...
The emergence of a new generation of remote sensing and geopositioning technologies, as well as increased capabilities in image processing, computing, and inferential techniques, have enabled the development and implementation of increasingly efficient and cost-effective multilevel sampling designs for forest inventory. In this paper, we (i) describe the conceptual basis of multilevel sampling, (ii) provide a detailed review of several previously implemented multilevel inventory designs, (iii) describe several important technical considerations that can influence the efficiency of a multilevel sampling design, and (iv) demonstrate the application of a modern multilevel sampling approach for estimating the forest...


    map background search result map search result map Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska An Accuracy Assessment of Positions Obtained Using Survey-and Recreational-Grade Global Positioning Systems across a Range of Forest Conditions within the Tanana Valley of Interior Alaska Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska An Accuracy Assessment of Positions Obtained Using Survey-and Recreational-Grade Global Positioning Systems across a Range of Forest Conditions within the Tanana Valley of Interior Alaska