Skip to main content
Advanced Search

Filters: Types: Citation (X) > partyWithName: Northeast CASC (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Northeast CASC > FY 2015 Projects ( Show direct descendants )

9 results (40ms)   

Filters
Date Range
Extensions
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract (from Ecological Society of America): Successful management of natural resources requires local action that adapts to larger‐scale environmental changes in order to maintain populations within the safe operating space (SOS) of acceptable conditions. Here, we identify the boundaries of the SOS for a managed freshwater fishery in the first empirical test of the SOS concept applied to management of harvested resources. Walleye (Sander vitreus) are popular sport fish with declining populations in many North American lakes, and understanding the causes of and responding to these changes is a high priority for fisheries management. We evaluated the role of changing water clarity and temperature in the decline...
Abstract (from Ecological Society of America): Population dynamics are often correlated in space and time due to correlations in environmental drivers as well as synchrony induced by individual dispersal. Many statistical analyses of populations ignore potential autocorrelations and assume that survey methods (distance and time between samples) eliminate these correlations, allowing samples to be treated independently. If these assumptions are incorrect, results and therefore inference may be biased and uncertainty underestimated. We developed a novel statistical method to account for spatiotemporal correlations within dendritic stream networks, while accounting for imperfect detection in the surveys. Through simulations,...
Abstract (from AGU Pubs): Land and water surfaces play a critical role in hydroclimate by supplying moisture to the atmosphere, yet the ability of climate models to capture their feedbacks with the atmosphere relative to large‐scale transport is uncertain. To assess these land‐lake‐atmosphere feedbacks, we compare the controls on atmospheric moisture simulated by a regional climate model (RegCM) with observations and reanalysis products for the Great Lakes region. Three 23 year simulations, driven by one reanalysis product and two general circulation models, are performed. RegCM simulates wetter winters and drier summers than observed by up to 31 and 21%, respectively. Moisture advection exhibits similar biases,...
Abstract (from ScienceDirect): Climate change is affecting the benefits society derives from forests. One such forest ecosystem service is maple syrup, which is primarily derived from Acer saccharum(sugar maple), currently an abundant and widespread tree species in eastern North America. Two climate sensitive components of sap affect syrup production: sugar content and sap flow. The sugar in maple sap derives from carbohydrate stores influenced by prior year growing season conditions. Sap flow is tied to freeze/thaw cycles during early spring. Predicting climate effects on syrup production thus requires integrating observations across scales and biological processes. We observed sap at 6 sugar maple stands spanning...
Abstract (from ScienceDirect): Maple sugaring mainly uses sugar and red maples (Acer saccharum and Acer rubrum) by tapping them for sap in the leafless-state across large portions of their ranges. How much sap exudes from a tap hole and how sweet this sap is, can vary substantially. Year-to-year variation in sap yield and sugar content can be primarily traced to differences in meteorological conditions that drive sap runs. Yet, how much of the total variation in sap yield and sugar content is linked to the year, site, species, tree, or tap has not been investigated systematically. Here, we reviewed the literature and also compiled a dataset of sap yield and sugar content from gravity taps on 324 red and sugar maples....
Categories: Publication; Types: Citation
Abstract: This research investigates how changes to floodplains in the Connecticut River Basin impact flood events. Climate impacted flows and increased development within the floodplain could lead to worsening flood events and less habitat availability for threatened species. Potential future conditions are evaluated through a wide range of scenarios to assess the range of possible impacts using a HEC-RAS 2D model. Three different flood events, 1-yr, 10-yr, and 100-yr, are evaluated for each scenario. Five metrics, Discharge, Depth, Time of Arrival, Flooding Duration, and Number of Buildings Flooded, are tracked for each scenario. These metrics are compared to select the ideal course of action given multiple potential...
Abstract (from Geoscientific Model Development): Biosphere–atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentrations of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase) is of particular importance in this process. The FORCAsT (FORest Canopy Atmosphere Transfer) 1-D model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs) and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the...
Abstract (from ScienceDirect): Foliar emissions of biogenic volatile organic compounds (BVOC)—important precursors of tropospheric ozone and secondary organic aerosols—vary widely by vegetation type. Modeling studies to date typically represent the canopy as a single dominant tree type or a blend of tree types, yet many forests are diverse with trees of varying height. To assess the sensitivity of biogenic emissions to tree height variation, we compare two 1-D canopy model simulations in which BVOC emission potentials are homogeneous or heterogeneous with canopy depth. The heterogeneous canopy emulates the mid-successional forest at the University of Michigan Biological Station (UMBS). In this case, high-isoprene-emitting...
Abstract: Active geomorphic features of rivers like sandbars provide habitat for endangered and threatened riparian plant and animal species. However, human development has altered flow and sediment regimes, thus impairing formation of sandbars and islands. Large scale mapping of the fluvial geomorphology in river ecosystems like the Connecticut River is are necessary to understand the dynamics of these features and preserve habitat. Orthophotographs from 2012 from United States Department of Agriculture's Farm Service Agency (FSA), National Agriculture Imagery Program (NAIP) were used to develop a model in ArcGIS Pro to identify fluvial geomorphic features in the Connecticut River and 12 of its major tributaries....