Skip to main content
Advanced Search

Filters: Date Range: {"choice":"year"} (X) > Types: Citation (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Southwest CASC > FY 2013 Projects ( Show direct descendants )

20 results (10ms)   

View Results as: JSON ATOM CSV
Our objective was to quantitatively characterize the landscape of climate-relevant resource decisions in the southwestern United States. We worked with stakeholders to determine actual uses of climate-relevant information used in natural resource decisions. We used content analysis of federal register records of decisions and stakeholder consultative groups to develop a survey of decision makers querying the use of climate information in decisions. We sought to create a classification of decisions attributes, information needs, and decision processes that rely on climate science. We sought to engage stakeholder consultative groups to define mechanisms for best filtering, delivering and interpreting what has become...
This project links climate, hydrological, and ecological changes over the next 30 years in a Great Basin watershed. In recent years, climate variability on annual and decadal time scales has been recognized as greater than commonly perceived with increasing impacts on ecosystems and available water resources. Changes in vegetation distribution, composition and productivity resulting from climate change affect plant water use, which in turn can alter stream flow, groundwater and eventually available water resources. To better understand these links, project researchers implemented two computer-based numeric models in the Cleve Creek watershed in the Schell Creek Range, east of Ely, Nevada. The application of the...
Abstract (from http://journals.ametsoc.org/doi/full/10.1175/WCAS-D-16-0008.1): Resource managers and decision-makers are increasingly tasked with integrating climate change science into their decisions about resource management and policy development. This often requires climate scientists, resource managers, and decision-makers to work collaboratively throughout the research processes, an approach to knowledge development that is often called “coproduction of knowledge.” The goal of this paper is to synthesize the social science theory of coproduction of knowledge, the metrics currently used to evaluate usable or actionable science in several federal agencies, and insights from experienced climate researchers and...
(Abstract from Springer): There is increasing interest among scholars in producing information that is useful and usable to land and natural resource managers in a changing climate. This interest has prompted transitions from scientist- to stakeholder-driven or collaborative approaches to climate science. A common indicator of successful collaboration is whether stakeholders use the information resulting from the projects in which they are engaged. However, detailed examples of how stakeholders use climate information are relatively scarce in the literature, leading to a challenge in understanding what researchers can and should expect and plan for in terms of stakeholder use of research findings. Drawing on theoretical,...
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-14-00289.1): There is an increasing demand for climate science that decision-makers can readily use to address issues created by climate variability and climate change. To be usable, the science must be relevant to their context and the complex management challenges they face and credible and legitimate in their eyes. The literature on usable science provides guiding principles for its development, which indicate that climate scientists who want to participate in the process need skills in addition to their traditional disciplinary training to facilitate communicating, interacting, and developing and sustaining relationships with stakeholders outside...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/eco.1723/full): Quantifying the regulation of precipitation-associated vegetation dynamics on land surface water balance poses a particular challenge in current eco-hydrological studies because terrestrial ecological processes interact with hydrological processes, and both are subject to precipitation change. The objective of this study is to examine how precipitation change-associated vegetation dynamics may regulate catchment water balance in a semiarid to arid mountain ecosystem. To achieve this objective, R-RHESSys, which is short for rasterised regional hydro-ecological simulation system, a distributed hydro-ecological model, was applied to the Cleve...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/conl.12322/full): Under rapid landscape change, there is a significant need to expand and connect protected areas (PAs) to prevent further loss of biodiversity and preserve ecological functions across broad geographies. We used a model of landscape resistance and electronic circuit theory to estimate patterns of ecological flow among existing PAs in the western United States. We applied these results to areas previously identified as having high conservation value to distinguish those best positioned to maintain and enhance ecological connectivity and integrity. We found that current flow centrality was highest and effective resistance lowest in areas that...
Abstract from Europe PMC: Meeting ecosystem management challenges posed by climate change requires building effective communication channels among researchers, planners and practitioners to focus research on management issues requiring new knowledge. We surveyed resource managers within two regions of the western United States regions to better understand perceived risks and vulnerabilities associated with climate change and barriers to obtaining and using relevant climate science information in making ecosystem management decisions. We sought to understand what types of climate science information resource managers find most valuable, and the formats in which they prefer to receive climate science information....
The U.S. Department of the Interior Climate Science Centers (CSCs) work with natural and cultural resource managers and scientists to gather information and build tools needed to help fish, wildlife, and ecosystems adapt to the impacts of climate change. The CSCs prioritize the delivery of actionable science products (e.g., synthesized scientific information, maps, decision support tools, etc.) that are focused on key management priorities and coproduced by teams of scientists and managers. In the specific case of the Northwest CSC, we have been successful at promoting and supporting the co-production of actionable climate science at the individual project level, but it has been more difficult to replicate this...
Abstract: Alaska’s national parks draw millions of people annually to enjoy wildlife, breathtaking scenery, and recreational adventure. Visitor use is highly seasonal and occurs primarily during the summer months when temperatures are warm and daylight is long. Climate is an important consideration when planning a trip to Alaska’s national parks because of the great distances and associated costs of travel for many visitors. As a result of projected climate warming, peak visitor season of use in Alaska’s national parks may expand. To examine the potential effects of warming climate on park visitor season of use, we used regression analyses to quantify the relationship between historical (1980–2009) visitor use and...
Abstract (from ScienceDirect): Mountain watersheds serve as important water sources for socioeconomic activities in semiarid and arid regions. This study examined the streamflow response to snow regime shifts associated with climate variability in the US Great Basin. To this end, the coupled hydro-ecological simulation system (CHESS), a process-based and distributed model, was applied to four mountain watersheds in the US Great Basin. Historical weather records for the period of 1961–1990 were used to spin-up model simulations so that the soil water and vegetation reached the equilibrium state under long-term climate conditions; the period of 1991–2015 was selected as the study period. The model evaluation suggested...
Abstract (from Springer): Analyses of observed non-Gaussian daily minimum and maximum temperature probability distribution functions (PDFs) in the Southwest US highlight the importance of variance and warm tail length in determining future heat wave probability. Even if no PDF shape change occurs with climate change, locations with shorter warm tails and/or smaller variance will see a greater increase in heat wave probability, defined as exceedances above the historical 95th percentile threshold, than will long tailed/larger variance distributions. Projections from ten downscaled CMIP5 models show important geospatial differences in the amount of warming expected for a location. However, changes in heat wave probability...
Abstract (from PNAS): North Pacific jet stream (NPJ) behavior strongly affects cool-season moisture delivery in California and is an important predictor of summer fire conditions. Reconstructions of the NPJ before modern fire suppression began in the early 20th century identify the relationships between NPJ characteristics and precipitation and fire extremes. After fire suppression, the relationship between the NPJ and precipitation extremes is unchanged, but the NPJ–fire extremes relationship breaks down. Simulations with high CO2 forcing show higher temperatures, reduced snowpack, and drier summers by 2070 to 2100 whether overall precipitation is enhanced or reduced, thereby overriding historical dynamic NPJ precursor...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0006320714002882): With ongoing global change, there is an urgent need to expand existing networks of important conservation areas around the world. In the western United States, vast areas of public land, including those administered by the Bureau of Land Management (BLM), present substantial conservation opportunities. For 11 contiguous western states, we used a novel multiple-criteria analysis to model and map contiguous areas of roadless BLM land that possessed important ecological indicators of high biodiversity, resilience to climate change, and landscape connectivity. Specifically, we leveraged available spatial datasets to implement a systematic...
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/WCAS-D-14-00050.1): Coproduction of knowledge is believed to be an effective way to produce usable climate science knowledge through a process of collaboration between scientists and decision makers. While the general principles of coproduction—establishing long-term relationships between scientists and stakeholders, ensuring two-way communication between both groups, and keeping the focus on the production of usable science—are well understood, the mechanisms for achieving those goals have been discussed less. It is proposed here that a more deliberate approach to building the relationships and communication channels between scientists and stakeholders...
Abstract (from http://www.ingentaconnect.com/content/saf/jof/2016/00000114/00000002/art00008): Collaborative natural resource management has emerged as a means to increase the transparency of decisionmaking in public lands management and to promote shared learning among stakeholders. We developed a rapid forest assessment (RFA) approach for monitoring the key characteristics of forests that capitalizes on the growing interest for citizen science monitoring and can be implemented at large extents. The methods were designed for use with minimal training, to maximize field efficiency, and to simplify interpretation of the data. We chose our variables based on the common interests and questions of collaborative groups....
Abstract (from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143619): Key to understanding the implications of climate and land use change on biodiversity and natural resources is to incorporate the physiographic platform on which changes in ecological systems unfold. Here, we advance a detailed classification and high-resolution map of physiography, built by combining landforms and lithology (soil parent material) at multiple spatial scales. We used only relatively static abiotic variables (i.e., excluded climatic and biotic factors) to prevent confounding current ecological patterns and processes with enduring landscape features, and to make the physiographic classification more interpretable...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/cobi.12503/abstract): Geodiversity has been used as a surrogate for biodiversity when species locations are unknown, and this utility can be extended to situations where species locations are in flux. Recently, scientists have designed conservation networks that aim to explicitly represent the range of geophysical environments, identifying a network of physical stages that could sustain biodiversity while allowing for change in species composition in response to climate change. Because there is no standard approach to designing such networks, we compiled 8 case studies illustrating a variety of ways scientists have approached the challenge. These studies...
Abstract (from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794763/): Since 2000, the phenology has advanced in some years and at some locations on the Qinghai-Tibetan Plateau, whereas it has been delayed in others. To understand the variations in spring vegetation growth in response to climate, we conducted both regional and experimental studies on the central Qinghai-Tibetan Plateau. We used the normalized difference vegetation index to identify correlations between climate and phenological greening, and found that greening correlated negatively with winter-spring time precipitation, but not with temperature. We used open top chambers to induce warming in an alpine meadow ecosystem from 2012 to 2014. Our results...
Abstract (from http://iopscience.iop.org/article/10.1088/1748-9326/10/12/124023/meta): Temperature variability in the Southwest US is investigated using skew-normal probability distribution functions (SN PDFs) fitted to observed wintertime daily maximum temperature records. These PDFs vary significantly between years, with important geographical differences in the relationship between the central tendency and tails, revealing differing linkages between weather and climate. The warmest and coldest extremes do not necessarily follow the distribution center. In some regions one tail of the distribution shows more variability than does the other. For example, in California the cold tail is more variable while the warm...