Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/WaterCoastsandIce"} (X) > Types: Citation (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Southeast CASC ( Show direct descendants )

47 results (20ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Southeast CASC
View Results as: JSON ATOM CSV
The Northern Gulf of Mexico Sentinel Site Cooperative and the Southeast Climate Science Center developed a new resource - Keeping Pace: A short guide to navigating sea-level rise models! This quick four pager covers the importance of model selection, helpful concepts, model categories, and an example of how to utilize these models to address coastal issues. This resource was largely informed by the Sea-Level Rise Modeling Handbook: Resource Guide for Coastal Land Managers, Engineers, and Scientists, which resulted from a Southeast CSC funded project.
Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/1752-1688.12304/abstract): The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases...
Abstract (from http://www.ncbi.nlm.nih.gov/pubmed/26022481): Premise of the study: Salt marshes are highly productive and valuable ecosystems, providing many services on which people depend. Spartina alterniflora Loisel (Poaceae) is a foundation species that builds and maintains salt marshes. Despite this species' importance, much of its basic reproductive biology is not well understood, including flowering phenology, seed production, and the effects of flowering on growth and biomass allocation. We sought to better understand these life history traits and use that knowledge to consider how this species may be affected by climate change. Methods: We examined temporal and spatial patterns in flowering and seed...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0272771416302724): Salt marshes buffer coastlines and provide critical ecosystem services from storm protection to food provision. Worldwide, these ecosystems are in danger of disappearing if they cannot increase elevation at rates that match sea-level rise. However, the magnitude of loss to be expected is not known. A synthesis of existing records of salt marsh elevation change was conducted in order to consider the likelihood of their future persistence. This analysis indicates that many salt marshes did not keep pace with sea-level rise in the past century and kept pace even less well over the past two decades. Salt marshes experiencing higher local...
Abstract (from U.S. Department of Agriculture Forest Service): An understanding of the applicability and utility of hydrologic models is critical to support the effective management of water resources throughout the Southeastern United States (SEUS) and Puerto Rico (PR). Hydrologic models have the capacity to provide an estimate of the quantity of available water at ungauged locations (i.e., areas of the country where a U.S. Geological Survey [USGS] continuous record gauge is not installed) and provide the baseline flow information necessary to develop the linkages between water availability and characteristics of streamflow that support ecological communities (i.e., support the development of flow-ecology response...
thumbnail
Stream flows are essential for maintaining healthy aquatic ecosystems and for supporting human water supply needs. Integrated modeling approaches assessing the impact of changes in climate, land use, and water withdrawals on stream flows and the subsequent impact of changes in flow regime on aquatic biota at multiple spatial scales are necessary to insure an adequate supply of water for humans and healthy river ecosystems. We compared streamflow predictions from a regional-scale hydrological model to those of several fine-scale SW models under a range of hypothetical climate change scenarios to determine the range of predicted streamflow responses to fixed climate perturbations.This spreadsheet contains the results...
Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta) tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ~250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles...
Use of existing marine protected areas (MPAs) by far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on MPA use by marine turtles in the Gulf of Mexico, we used satellite transmitters in 2010 and 2011 to track movements of 11 adult female breeding green turtles (Chelonia mydas) tagged in Dry Tortugas National Park (DRTO), in the Gulf of Mexico, south Florida, USA. Throughout the study period, turtles emerged every 9–18 days to nest. During the intervals between nesting episodes (i.e., inter-nesting periods), the turtles consistently used a common core-area within the DRTO boundary, determined using individual 50% kernel-density estimates (KDEs). We mapped the...
Streamflow is essential for maintaining healthy aquatic ecosystems and for supporting human water supply needs. Changes in climate, land use and water use practices may alter water availability. Understanding the potential effect of these changes on aquatic ecosystems is critical for long-term water management to maintain a balance between water for human consumption and ecosystem needs. Fish species data and streamflow estimates from a rainfall-runoff and flow routing model were used to develop boosted regression tree models to predict the relationship between streamflow and fish species richness (FSR) under plausible scenarios of (1) water withdrawal, (2) climate change and (3) increases in impervious surfaces...
The goal of barrier island restoration in the northern Gulf of Mexico is to restore barrier island morphology using sediment to support the functions and habitats the islands provide. Barrier island restoration typically involves placement of sediment either directly on the island footprint or within the littoral zone for system transport and distribution. The re-engineering of barrier islands presents numerous challenges and uncertainties associated with climate change induced hurricanes/storms and other dynamic components of the system such as sediment availability and erosional trends. The goal of this study was to use a collaborative SDM approach to develop two Bayesian decision network models (DMs) for restoration...
thumbnail
Stream flows are essential for maintaining healthy aquatic ecosystems and for supporting human water supply needs. Integrated modeling approaches assessing the impact of changes in climate, land use, and water withdrawals on stream flows and the subsequent impact of changes in flow regime on aquatic biota at multiple spatial scales are necessary to insure an adequate supply of water for humans and healthy river ecosystems. This spreadsheet contains an inventory of existing hydrologic models in the Southeast region and Puerto Rico. Data were compiled by contacting federal and state agencies, members of academia, and environmental consultants.
Abstract (from USGS): Adapting cultural resources to climate-change effects challenges traditional cultural resource decision making because some adaptation strategies can negatively affect the integrity of cultural resources. Yet, the inevitability of climate-change effects—even given the uncertain timing of those effects—necessitates that managers begin prioritizing resources for climate-change adaptation. Prioritization imposes an additional management challenge: managers must make difficult tradeoffs to achieve desired management outcomes related to maximizing the resource values. This report provides an overview of a pilot effort to integrate vulnerability (exposure and sensitivity), significance, and use potential...
Abstract (from http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0099604): Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves ( Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which...
A handbook for resource managers was produced to describe the science and simulation models for understanding the dynamics and impacts of sea-level rise on our coastal ecosystems. The focus of this guide was to categorize and describe the suite of data, methods, and models, their design, structure, and application, for hindcasting and forecasting the potential impacts of sea-level rise in coastal environments. Basic illustrations of the components of the Earth’s hydrosphere and effects of plate tectonics, planetary orbits, and glaciation are explained to understand the long-term cycles of historical sea-level rise and fall. Discussion of proper interpretation of contemporary sea level rates and trends from tide...
A software program, called P2S, has been developed which couples the daily stream temperature simulation capabilities of the U.S. Geological Survey Stream Network Temperature model with the watershed hydrology simulation capabilities of the U.S. Geological Survey Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates hydrologic response to various combinations of climate and land use. Stream Network Temperature was developed to help aquatic biologists and engineers predict the effects of changes that hydrology and energy have on water temperatures. P2S will allow scientists and watershed managers...
Abstract (from SpringerLink): Foundation plant species play a critical role in coastal wetlands, often modifying abiotic conditions that are too stressful for most organisms and providing the primary habitat features that support entire ecological communities. Here, we consider the influence of climatic drivers on the distribution of foundation plant species within coastal wetlands of the conterminous USA. Using region-level syntheses, we identified 24 dominant foundation plant species within 12 biogeographic regions, and we categorized species and biogeographic regions into four groups: graminoids, mangroves, succulents, and unvegetated. Literature searches were used to characterize the level of research directed...
Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru,...
Sea level rise during the 21st century will have a wide range of effects on coastal environments, human development, and infrastructure in coastal areas. The broad range of complex factors influencing coastal systems contributes to large uncertainties in predicting long-term sea level rise impacts. Here we explore and demonstrate the capabilities of a Bayesian network (BN) to predict long-term shoreline change associated with sea level rise and make quantitative assessments of prediction uncertainty. A BN is used to define relationships between driving forces, geologic constraints, and coastal response for the U.S. Atlantic coast that include observations of local rates of relative sea level rise, wave height, tide...


map background search result map search result map Regional to local coarse to fine scale global change impact study on flow Southeast modeling efforts for flow and ecology Regional to local coarse to fine scale global change impact study on flow Southeast modeling efforts for flow and ecology