Skip to main content
Advanced Search

Filters: Types: Citation (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Southeast CASC > FY 2011 Projects > SERAP: Modeling of Global and Land Use Change Impacts ( Show direct descendants )

4 results (20ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Southeast CASC
____FY 2011 Projects
_____SERAP: Modeling of Global and Land Use Change Impacts
View Results as: JSON ATOM CSV
We developed a spatially explicit model that simulated future southern pine beetle (Dendroctonus frontalis, SPB) dynamics and pine forest management for a real landscape over 60 years to inform regional forest management. The SPB has a considerable effect on forest dynamics in the Southeastern United States, especially in loblolly pine (Pinus taeda) stands that are managed for timber production. Regional outbreaks of SPB occur in bursts resulting in elimination of entire stands and major economic loss. These outbreaks are often interspersed with decades of inactivity, making long-term modeling of SPB dynamics challenging. Forest management techniques, including thinning, have proven effective and are often recommended...
Managing ecosystems for resilience and sustainability requires understanding how they will respond to future anthropogenic drivers such as climate change and urbanization. In fire-dependent ecosystems, predicting this response requires a focus on how these drivers will impact fire regimes. Here, we use scenarios of climate change, urbanization and management to simulate the future dynamics of the critically endangered and fire-dependent longleaf pine (Pinus palustris) ecosystem. We investigated how climate change and urbanization will affect the ecosystem, and whether the two conservation goals of a 135% increase in total longleaf area and a doubling of fire-maintained open-canopy habitat can be achieved in the...
Abstract (from http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0102261): The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models...