Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:4213} (X) > Extensions: Raster (X)

50 results (29ms)   

View Results as: JSON ATOM CSV
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) Program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the main and side channels (where accessible) of the Dresden reach June 4 – 28, 2018.
thumbnail
Hydroacoustic (sonar) data were collected for the Mississippi, St. Croix, and Minnesota Rivers for the development of high-resolution bathymetry and sidescan imagery. Small areas containing priority mussel habitat had additional collection efforts to map water velocities and bottom composition. Combining these data in a GIS can provide key components to characterizing physical benthic habitat for native mussels in a riverine environment. These information needs were highly desired by the National Park Service to more accurately assess environmental factors that influence native mussel distribution. The collaborative effort was funded by the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environment...
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc)...
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 5-meter (m; 16.404 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc)...
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). Backscatter is the acoustic reflectivity, which is the measure of energy obtained from the echo intensity, and can provide an indication about the nature of the river bottom and its physical character. Image analysis and classification of backscatter, with the combined datasets of bathymetry (and its derivatives) and ground truthing, can predict surficial substrate, or sediment type. For habitat analysis, these datasets were desired by the NPS to help inform and mitigate...
thumbnail
This dataset is a digital elevation model (DEM) of the bathymetry for six sites where known rock structures exist in the St. Croix River. The DEMs have a 10-cm resolution (Boom site is 0.5-m) to provide ultra-high-resolution elevations for investigating the use of hydroacoustic technologies for quantifying habitat for imperiled mussels Spectaclecase (Margaritifera monodonta) and Salamander (Simpsonaias ambigua) typically associated with rock structures (e.g., wing dams, revetment) in rivers. Bathymetry is essential for providing the depths and shapes of underwater terrain and it represents the three-dimensional features (or relief) of underwater terrain. Multibeam sonar data were collected using a Norbit integrated...
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) Program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Hydroacoustic (sonar) data were collected for the Mississippi, St. Croix, and Minnesota Rivers for the development of high-resolution bathymetry and sidescan imagery. Small areas containing priority mussel habitat had additional collection efforts to map water velocities and bottom composition. Combining these data in a GIS can provide key components to characterizing physical benthic habitat for native mussels in a riverine environment. This information is highly desired by the National Park Service to more accurately assess environmental factors that influence native mussel distribution. The collaborative effort was funded by the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environment and Natural...
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the West Pit of Hanson Pits (where accessible) of the Marseilles reach June 25-26, 2018.
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the river bed. The acoustic data were collected from the main and side channels (where accessible) of the Marseilles reach June 26 – August 23, 2017, and May 22, 2018.
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). High-resolution bathymetry data was surveyed using a multibeam sonar. The depth and characteristics of the riverbed are important parameters of habitat for benthic (bottom-dwelling) organisms, and are a fundamental parameter for riverine ecosystems. A terrestrial lidar unit was used to collect shoreline elevation points. These datasets were highly desired by the NPS to help inform and mitigate potential impacts to mussels or benthic habitat.
thumbnail
Hydroacoustic (sonar) data were collected for the Mississippi, St. Croix, and Minnesota Rivers for the development of high-resolution bathymetry and sidescan imagery. Small areas containing priority mussel habitat had additional collection efforts to map water velocities and bottom composition. Combining these data in a GIS can provide key components to characterizing physical benthic habitat for native mussels in a riverine environment. This information is highly desired by the National Park Service to more accurately assess environmental factors that influence native mussel distribution. The collaborative effort was funded by the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environment and Natural...
thumbnail
This dataset is a digital surface of depth-averaged flow velocities for six sites where known rock structures exist in the St. Croix River. Acoustic Doppler Current Profilers (ADCP) are used to measure how fast water is moving across an entire water column. The ADCP measures water currents with sound, and the resulting flow information will be used for investigating the use of hydroacoustic technologies for quantifying habitat for imperiled mussels Spectaclecase (Margaritifera monodonta) and Salamander (Simpsonaias ambigua) typically associated with rock structures (e.g., wing dams, revetment) in rivers. River current velocities were collected using a SonTek RiverSurveyor© M9 for all six sites. All hydroacoustic...
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). High-resolution bathymetry data was surveyed using a multibeam sonar. The depth and characteristics of the riverbed are important parameters of habitat for benthic (bottom-dwelling) organisms, and are a fundamental parameter for riverine ecosystems. These datasets were desired by the NPS to help inform and mitigate potential impacts to mussels or benthic habitat.
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected July 28, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected July 28-29, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar...
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic habitats of the Illinois River will be interpreted to support Asian carp research, monitoring and control. The entire study plan will consist of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), will have priority areas and backwaters collected and analyzed first.
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the main and side channels (where accessible) of the Starved Rock reach August 24 – September 13, 2017, and May 23, 2018.
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). High-resolution bathymetry data was surveyed using a multibeam sonar. The depth and characteristics of the riverbed are important parameters of habitat for benthic (bottom-dwelling) organisms, and are a fundamental parameter for riverine ecosystems. A terrestrial lidar unit was used to collect shoreline elevation points. These datasets were desired by the NPS to help inform and mitigate potential impacts to mussels or benthic habitat.
Remote sensing technologies, such as high-resolution sonars, can be used to collect more detailed information about the benthic and water column characteristics of macrohabitats in the Illinois River. These data are high-resolution bathymetry (river bottom elevation) in raster format that represent Starved Rock reach in the summer of 2017 and 2018. The hydrographic data were collected on the main channel and side channels where accessible.


map background search result map search result map UMRR Dresden Reach Topobathy UMRR Marseilles Topobathy Illinois River, Starved Rock, Multibeam Bathymetry, May 2018 Illinois River, Dresden, Sidescan Image Mosaic June 2018 Illinois River, Hanson Pits,West Pit, Sidescan Image Mosaic, 2018 Illinois River, Marseilles, Sidescan Image Mosaic, 2017-2018 Illinois River, Starved Rock, Sidescan Image Mosaic, 2017-2018 Illinois River, Brandon, Multibeam Bathymetry, May 2018 SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Topobathy Elevation Data SACN Osceola Boat Landing: 2019 Backscatter (Acoustic Reflectivity) Data SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Bathymetry Elevation Data SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Topobathy Elevation Hillshade Duluth Entry: 10-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, July 2020 Duluth Entry: 10-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Duluth Entry: 5-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Mississippi National River and Recreation Area, Mississippi River Pool 1 Low-Resolution (5-meter) Bathymetry, 2019 Mississippi National River and Recreation Area - Mississippi River Pools 2-3, Low Resolution (5-meter) Bathymetry, 2019 St. Croix National Scenic Riverway, ADCP Flow Diffusion of the St. Croix River near Hudson, WI, 20181004 Depth average velocity of select Rock Outcrops of the St. Croix River, May 2021 Bathymetry of select Rock Outcrops of the St. Croix River, May 2021 SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Bathymetry Elevation Data SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Topobathy Elevation Data SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Topobathy Elevation Hillshade Duluth Entry: 10-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Duluth Entry: 5-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Duluth Entry: 10-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, July 2020 Mississippi National River and Recreation Area, Mississippi River Pool 1 Low-Resolution (5-meter) Bathymetry, 2019 Illinois River, Brandon, Multibeam Bathymetry, May 2018 Illinois River, Starved Rock, Sidescan Image Mosaic, 2017-2018 Illinois River, Starved Rock, Multibeam Bathymetry, May 2018 Bathymetry of select Rock Outcrops of the St. Croix River, May 2021 Depth average velocity of select Rock Outcrops of the St. Croix River, May 2021 Illinois River, Dresden, Sidescan Image Mosaic June 2018 UMRR Dresden Reach Topobathy Illinois River, Marseilles, Sidescan Image Mosaic, 2017-2018 UMRR Marseilles Topobathy Mississippi National River and Recreation Area - Mississippi River Pools 2-3, Low Resolution (5-meter) Bathymetry, 2019