Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:64840} (X) > partyWithName: Frank Thompson (X)

8 results (38ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract (from Wiley): The brown-headed nuthatch (Sitta pusilla) was likely extirpated from Missouri in the early 1900s as a result of habitat loss through extensive logging. Conservation partners including the Missouri Department of Conservation, United States Forest Service, University of Missouri, and others, relocated 102 brown-headed nuthatches from Ouachita National Forest in Arkansas to Mark Twain National Forest in Missouri in 2020 and 2021 to establish a local population. We tracked 50 individuals for 24 ± 11 (median ± SD) days after release using radio telemetry and monitored movements in relation to sex and whether a bird was captured alone or as part of a group. We examined 25-day survival using a spatial...
Categories: Publication; Types: Citation
thumbnail
The forests of the Northeastern United States are home to some of the greatest diversity of nesting songbirds in the country. Climate change, shifts in natural disturbance regimes, and invasive species pose threats to forest habitats and bird species in the northeastern United States and represent major challenges to natural resource managers. Although broad adaptation approaches have been suggested for sustaining forested habitats under global change, it is unclear how effective the implementation of these strategies at local and regional scales will be for maintaining habitat conditions for a broad suite of forest-dependent bird species over time. Moreover, given the diversity in forest stakeholders across the...
Abstract (from Nature Climate Change): Understanding global change processes that threaten species viability is critical for assessing vulnerability and deciding on appropriate conservation actions1. Here we combine individual-based2 and metapopulation models to estimate the effects of climate change on annual breeding productivity and population viability up to 2100 of a common forest songbird, the Acadian flycatcher (Empidonax virescens), across the Central Hardwoods ecoregion, a 39.5-million-hectare area of temperate and broadleaf forests in the USA. Our approach integrates local-scale, individual breeding productivity, estimated from empirically derived demographic parameters that vary with landscape and climatic...
Forests in the Eastern United States are changing in response to ecological succession, tree harvest and other disturbances and climate change has the potential to further change these forests. We predicted the distribution and abundance of common tree species across portions of the Eastern U.S. under alternative climate scenarios that varied in the amount of warming by the end of the century from 1.1 to 4.2 degrees C. We used a forest landscape change model to forecast changes in tree abundances and distribution in the North Atlantic region of the U.S. while accounting for climate change, succession, and harvest. We then considered a broader region of the U.S. and combined our results with results from previous...
thumbnail
Historical and projected climate data point toward significant changes in the future for the Northeastern and Midwestern U.S. These changes will include impacts to many species (like birds, fish, and mammals), ecosystems (like forests), and natural resources (like water) that humans appreciate and rely on. In order to prepare for these changes, land and resource managers need to be able to predict how species will respond, what specific mechanisms are driving these changes, and what thresholds wildlife species may soon be pushed across. Crossing these thresholds could lead to rapid change or decline in the health of a wildlife population. In response to this need, a team of researchers is working to identify the...
Abstract (from British Ecological Society): Tree harvest and climate change can interact to have synergistic effects on tree species distribution changes. However, few studies have investigated the interactive effects of tree harvest and climate change on tree species distributions. We assessed the interactive effects of tree harvest and climate change on the distribution of 29 dominant tree species at 270 m resolution in the southern United States, while accounting for species demography, competition, urban growth and natural fire. We simulated tree species distribution changes to year 2100 using a coupled forest dynamic model (LANDIS PRO), ecosystem process model (LINKAGES) and urban growth model (SLEUTH). The...
Categories: Publication; Types: Citation; Tags: Forests, Landscapes, Northeast CASC
Abstract (from Forests): Fire is a multi-scale process that is an important component in determining ecosystem age structures and successional trajectories across forested landscapes. In order to address questions regarding fire effects over large spatial scales and long temporal scales researchers often employ forest landscape models which can model fire as a spatially explicit disturbance. Within forest landscape models site-level fire effects are often simplified to the species, functional type, or cohort level due to time or computational resource limitations. In this study we used a subset of publicly available U.S. Forest Service forest inventory data (FIA) to estimate short-term fire effects on tree densities...
Categories: Publication; Types: Citation; Tags: Forests, Landscapes, Northeast CASC
thumbnail
The Northeast Climate Adaptation Science Center (NE CASC) develops scientific information and tools to help managers address climate variability and climate change related to impacts on land, water, fish and wildlife, nearshore, coastal and cultural heritage resources. The NE CASC is hosted by the University of Massachusetts Amherst (UMASS) with consortium partners College of Menominee Nation, Columbia University, Cornell University, Michigan State University, University of Missouri, University of Vermont, University of Wisconsin, Woodwell Climate Research Center and the United States Forest Service Northern Research Station. The NE CASC consortium addresses regional science priorities of the Department of the...


    map background search result map search result map Examining the Responses of Species to Climate Change: Will Wildlife Face Biological Thresholds? Identifying and Evaluating Adaptation Science for Forest Habitats and Bird Communities in the Northeast Northeast Climate Adaptation Science Center Consortium - Hosted by University of Massachusetts Amherst (2019-2024) Northeast Climate Adaptation Science Center Consortium - Hosted by University of Massachusetts Amherst (2019-2024) Identifying and Evaluating Adaptation Science for Forest Habitats and Bird Communities in the Northeast Examining the Responses of Species to Climate Change: Will Wildlife Face Biological Thresholds?