Skip to main content
Advanced Search

Filters: Tags: {"type":"Theme"} (X) > Date Range: {"choice":"year"} (X) > Types: Map Service (X)

Folders: ROOT > Users ( Show direct descendants )

420 results (27ms)   

Location

Folder
ROOT
_Users
Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Theme )
View Results as: JSON ATOM CSV
This data release documents proposed updates to geologic inputs (faults) for the upcoming 2023 National Seismic Hazard Model (NSHM). This version (1.0) conveys differences between 2014 NSHM fault sources and those recently released in the earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 data release by Hatem et al. (2021). A notable difference between the 2014 and 2023 datasets is that slip rates are provided at points for 2023 instead of generalized along the entire fault section length as in 2014; consequently, slip rates are not provided for fault sections in the draft 2023 dataset. Geospatial data (shapefile, kml and geojson) are provided in this data release with...
thumbnail
A three-dimensional groundwater flow model using MODFLOW-NWT was developed to evaluate historical and potential stream capture in the lower Humboldt River Basin, Nevada. The Humboldt River Basin is the only river basin that is contained entirely within the state of Nevada. The effect of groundwater pumping on the Humboldt River is not well understood. Tools are needed to determine stream capture and manage groundwater pumping in the Humboldt River Basin. Previous work has demonstrated that the river’s surface-water resource is sensitive to groundwater withdrawals, which have steadily increased since the 1950s for agriculture, municipal, and mining uses. A numerical groundwater flow model was developed for the purpose...
thumbnail
Publicly available geospatial data were identified, collated, and analyzed for a region of karst terrain extending from Albany to Buffalo, New York. A series of geospatial datasets were assembled to determine the location and extent of karstic rock; bedrock geology and depth to bedrock; average water-table configuration; surficial geology; soil type, thickness, and hydraulic conductivity; land cover; and closed depressions in the land surface First release: 2021 Revised: July 2022 (ver. 2.0) Revised: October 2022 (ver. 3.0) Revised: January 2024 (ver. 4.0)
thumbnail
From August 2018 to October 2019, the U.S. Geological Survey collected spatially high-resolution water quality data as part of five shoreline synoptic surveys around the perimeters of Owasco, Seneca, and Skaneateles Lakes within the Finger Lakes Region of New York. Water-quality data were collected just below water surface utilizing YSI EXO2 multiparameter sondes and portable nitrate sensors paired with real-time GPS data as part of a HABs monitoring program in the Finger Lakes. In October 2019, water-quality data collection was paired with discrete phytoplankton grab samples on Owasco Lake and Seneca Lake. Phytoplankton grab samples were collected just below water surface with a peristaltic pump at twelve locations...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Aquatic Biology, Contaminants, HABS, Finger Lakes, Limnology, New York, All tags...
thumbnail
Globally, groundwater dependent ecosystems (GDEs) are increasingly vulnerable to groundwater extraction and land use practices. Groundwater supports these ecosystems by providing inflow, which can maintain water levels, water temperature, and chemistry necessary to sustain the biodiversity that they support. Many aquatic systems receive groundwater as a portion of base flow, and in some systems (e.g., springs, seeps, fens) the connection with groundwater is significant and important to the system’s integrity and persistence. Groundwater management decisions for human use may not consider ecological effects of those actions on GDEs, which rely on groundwater to maintain ecological function. This disconnect between...
thumbnail
The data contained in child items of this page were developed to support the Species Status Assessments conducted by the U.S. Fish & Wildlife Service and conservation planning for State, Federal, and non-government researchers, managers, landowners, and other partners for five focal herpetofauna species: gopher tortoise (Gopherus polyphemus), southern hognose snake (Heterodon simus), Florida pine snake (Pituophis melanoleucus mugitus), gopher frog (Lithobates capito), and striped newt (Notophthalmus perstriatus). These data were developed by the USGS Cooperative Fish & Wildlife Research Unit at the University of Georgia in collaboration with other partners. The three child items contain the following data: (1)...
thumbnail
This dataset contains all the layers associated with U.S. Geological Survey (USGS) Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) initiative for the Upper Peninsula Restoration Assessment (UPRA) which aims to identify and rank coastal areas with the greatest potential for wetland habitat restoration. Each layer has a unique contribution to the identification of restorable wetlands. The 7 parameters (Parameter 0: Mask, Parameter 1: Hydroperiod, Parameter 2: Wetland Soils, Parameter 3: Flowlines, Parameter 4: Conservation and Recreation Lands, Parameter 5: Impervious Surfaces, and Parameter 6: Land Use) and Index Composite directly correlate to areas that are recommended for restoration. The dikes, degree...
thumbnail
RBRduo pressure and temperature sensors, mounted on aluminum frames, were moored in shallow (< 6 m) water depths in Skagit and Bellingham Bays, Washington, USA, from December 2017 to February 2018, to capture wave heights and periods. Continuous pressure fluctuations are transformed into surface-wave observations of wave heights, periods, and frequency spectra at 30-minute intervals.
thumbnail
High-resolution single-channel Chirp and minisparker seismic-reflection data were collected by the U.S. Geological Survey in September and October 2006, offshore Bolinas to San Francisco, California. Data were collected aboard the R/V Lakota, during field activity L-1-06-SF. Chirp data were collected using an EdgeTech 512 chirp subbottom system and were recorded with a Triton SB-Logger. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and both were recorded with a Triton SB-Logger.
thumbnail
The U.S. Geological Survey in cooperation with the Grand River Dam Authority completed a high-resolution multibeam bathymetric survey to compute a new capacity and surface-area table. The capacity and surface-area tables describe the relation between the elevation of the water surface and the volume of water that can be impounded at each given water-surface elevation. The capacity and surface area of Grand Lake O’ the Cherokees were computed from a Triangular Irregular Network (TIN) surface created in Global Mapper Version 21.0.1. The TIN surface was created from three datasets: (1) a multibeam bathymetric survey of Grand Lake O’ the Cherokees in 2019 (Hunter and others 2020), (2) a 2017 USGS bathymetric survey...
thumbnail
This bathymetric dataset provides an update to the stage-storage relation for Quail Lake (reservoir) located in the El Dorado National Forest, Calif. Bathymetric data was collected using a multibeam echo sounder to provide near-complete coverage and was merged with USGS 3DEP lidar to compute a DEM of the lake and near shore. The DEM was used to computed storage and surface area for a range of stage elevations. Results show that the spillway elevation was 6799.3 feet (NAVD88) and the crest elevation was 6802.5 feet (NAVD88). At the spillway elevation the storage was 141.74 ac-ft with a surface area of 14.20 ac. At the crest elevation the storage was 190.05 ac-ft with a surface area of 15.89 ac.
thumbnail
Ground-based discrete snowpack measurements were collected during winter field campaigns starting in 2020. These data were collected as part of the U.S. Geological Survey (USGS) Next Generation Water Observing System (NGWOS) Upper Colorado River Basin project focusing on the relation between snow dynamics and water resources. This data release consists of three child items. Each child item contains snow depth, snow density, snow temperature, or snow water equivalent values measured discretely in the field. The data are provided in comma separated value (CSV) files.
thumbnail
This U.S. Geological Survey data release consists of a geospatial dataset containing information on estimated streamflow extent, stream velocity, and stream depth at Soldier Meadows Black Rock Desert - High Rock Canyon Emigrant Trails National Conservation Area, Nevada, and the data acquired and processed to support the estimation of those attributes. Supporting datasets include topographic survey data collected using a global navigation satellite system (GNSS) in Soldier Meadows from August 13-15, 2019, and an archive of the two-dimensional hydraulic model used to generate a polygon dataset for streamflow extent as well as raster datasets for stream velocity, and stream depth. The data release includes: 1) a polygon...
thumbnail
This data set contains shoreline rate of change statistics for New York State coastal wetlands. Analysis was performed using the Digital Shoreline Analysis System (DSAS), created by U.S. Geological Survey, version 5.0, an extension for ArcMap. A reference baseline was used as the originating point for orthogonal transects cast by the DSAS software. The transects intersect each polyline vector shoreline establishing intersection measurement points, which were then used to calculate the rates of change. End-point rates, calculated by dividing the distance of shoreline movement by the time elapsed between the oldest and the most recent shoreline, were generated for wetlands where fewer than three historic shorelines...
thumbnail
California's Central Valley ranges from the mountain fronts toward a central trough, mainly defined by the San Joaquin and Sacramento Rivers, and the relative distance from trough to valley edges is of interest. This data release provides supplemental data for the USGS Professional Paper 1766, titled Groundwater Availability of the Central Valley Aquifer, California and provides geographic information systems (GIS) datasets containing this relative distance grid and supporting data. Included in this data release are shapefiles used to define the Central Valley study area, the Central Valley trough, and a relative distance grid that may be used to spatially define other GIS data into zones between the edge of the...
thumbnail
Karst hydrologic systems are important resources in the state of Tennessee both as drinking water resources and as centers for possible biological diversity. These systems are susceptible to contamination due to the inherent connectivity between surface water and groundwater systems in karst systems. A partnership between the U.S. Geological Survey (USGS) and Tennessee Department of Conservation (TDEC) was formed to investigate karst spring systems across the state utilizing fluorescent groundwater tracing, particularly in areas where these resources may be used as drinking water sources. In fall 2021, USGS and TDEC staff identified possible vulnerabilities or complexities that may exist within karst spring systems...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the City of South Padre Island, Texas, deployed an acoustic Doppler current profiler (ADCP) to collect current velocity, wave height, and directional data in the lower Laguna Madre adjacent to South Padre Island, Texas. From July 19, 2022, through January 9, 2023, these data were collected at a site near South Padre Island (USGS station number 260551097100901) by using an up-looking acoustic doppler current profiler (ADCP) mounted on the bottom of the lower Laguna Madre. Raw data were collected at a frequency of 2 hertz (Hz); reported values were computed as the average of the processed data values for 60-minute intervals. All times are represented in Coordinated...
thumbnail
This data release contains time-lapse imagery taken at U.S. Geological Survey (USGS) stream gaging stations with associated hydrologic and meteorological data related to each image. These data are to help improve the development of models in detecting water elevation at a given stream gaging station. Images of the water surface and surroundings at USGS stream gaging stations were taken at varying time intervals ranging between every five minutes to an hour. Cameras used include trail cameras, web cameras, and the custom river imagery sensing (RISE) camera. Time-lapse images for each USGS stream gaging station are provided in compressed files (file extension .7z). These files are named in a format to identify the...
thumbnail
A total of 27 temperature sensors were deployed along the lower 90 miles of the Yakima River at 7 locations where cold water had been previously observed. These 7 cold-water areas had 3 to 6 temperature sensors installed to document the extent and duration of these cold-water areas and their impacts on mainstem temperatures of the Lower Yakima River. Cold-water areas included the mouths of tributaries, alongside channels, and within alcoves. Sensor deployments ranged from 1 to 2 years beginning in October 2018. All temperature data are included in the Yakima.temperatures.zip folder. Details of each monitoring location are provided in the site.locs.csv file. In addition to the raw data and site location information,...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Carlisle 30 x 60 minute quadrangle in Pennsylvania. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2019 and 2020 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.


map background search result map search result map Rate of shoreline change statistics for New York State coastal wetlands Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Wave observations from nearshore bottom-mounted pressure sensors in Skagit and Bellingham Bays, Washington, USA from Dec 2017 to Feb 2018 Range-wide habitat suitability maps for at-risk species in the longleaf system Data release of Bathymetric Map, Surface Area, and Capacity of Grand Lake O' the Cherokees, Northeastern Oklahoma, 2019 Geospatial data and surface-water model archive for evaluation of streamflow extent and hydraulic characteristics of a restored channel at Soldier Meadows, Black Rock Desert - High Rock Canyon Emigrant Trails National Conservation Area, Nevada Geospatial Data to Assess Karst Aquifer Systems Between Albany and Buffalo, New York (ver. 4.0, January 2024) Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 High-resolution spatial water-quality and discrete phytoplankton data, Owasco Lake, Seneca Lake, and Skaneateles Lake, Finger Lakes Region, New York, 2018-2019 Temperature data collected from the Lower Yakima River from October 2018 to October 2020 Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) Upper Peninsula, U.S. (ver. 2.0, January 2024) Imagery training dataset for the River Imagery Sensing (RISE) application Bathymetric survey and stage-storage assessment of Quail Lake, Calif., collected in 2022 Cowan, Tennessee Karst Groundwater Dye Tracing Water Year 2022 NGWOS Ground Based Discrete Snowpack Measurements Distribution Models Predicting Groundwater Influenced Ecosystems in the Northeastern United States Relative distance of California's Central Valley from trough to valley edge and supporting data Enhanced Terrain Imagery of the Carlisle 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Current Velocity, Wave Height, and Directional Data in the Lower Laguna Madre near South Padre Island, Texas, July 2022 to January 2023 MODFLOW-NWT Model Used to Evaluate Stream Capture Related to Groundwater Pumping, Lower Humboldt River Basin, Nevada (ver. 1.1, March 2024) Bathymetric survey and stage-storage assessment of Quail Lake, Calif., collected in 2022 Geospatial data and surface-water model archive for evaluation of streamflow extent and hydraulic characteristics of a restored channel at Soldier Meadows, Black Rock Desert - High Rock Canyon Emigrant Trails National Conservation Area, Nevada Cowan, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Temperature data collected from the Lower Yakima River from October 2018 to October 2020 Wave observations from nearshore bottom-mounted pressure sensors in Skagit and Bellingham Bays, Washington, USA from Dec 2017 to Feb 2018 Data release of Bathymetric Map, Surface Area, and Capacity of Grand Lake O' the Cherokees, Northeastern Oklahoma, 2019 High-resolution spatial water-quality and discrete phytoplankton data, Owasco Lake, Seneca Lake, and Skaneateles Lake, Finger Lakes Region, New York, 2018-2019 Enhanced Terrain Imagery of the Carlisle 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution MODFLOW-NWT Model Used to Evaluate Stream Capture Related to Groundwater Pumping, Lower Humboldt River Basin, Nevada (ver. 1.1, March 2024) Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) Upper Peninsula, U.S. (ver. 2.0, January 2024) NGWOS Ground Based Discrete Snowpack Measurements Geospatial Data to Assess Karst Aquifer Systems Between Albany and Buffalo, New York (ver. 4.0, January 2024) Rate of shoreline change statistics for New York State coastal wetlands Relative distance of California's Central Valley from trough to valley edge and supporting data Distribution Models Predicting Groundwater Influenced Ecosystems in the Northeastern United States Range-wide habitat suitability maps for at-risk species in the longleaf system Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 Imagery training dataset for the River Imagery Sensing (RISE) application