Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Categories: Data (X) > Tags: {"type":"Label"} (X) > Categories: Publication (X)

46 results (82ms)   

View Results as: JSON ATOM CSV
thumbnail
Description: The upper Gila River in New Mexico is one of the few unobstructed rivers in the Colorado River Basin with largely intact native fish populations, including four federally listed and one state listed species.Freshwater systems throughout the West continue to be threatened by human encroachment and water development. Methodologies or decision support tools to evaluate resource management practices that foster an understanding of how fish species adapt to the effects of climate change are critical to future resource management planning.
thumbnail
The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables....
thumbnail
Stream fragmentation alters the structure of aquatic communities on a global scale, generally through loss of native species. Among riverscapes in the Great Plains of North America, stream fragmentation and hydrologic alteration (flow regulation and dewatering) are implicated in the decline of native fish diversity. This study documents the spatio–temporal distribution of fish reproductive guilds in the fragmented Arkansas and Ninnescah rivers of south-central Kansas using retrospective analyses involving 63 years of fish community data. Pelagic-spawning fishes declined throughout the study area during 1950–2013, including Arkansas River shiner (Notropis girardi) last reported in 1983, plains minnow (Hybognathus...
thumbnail
Habitat fragmentation and flow regulation are significant factors related to the decline and extinction of freshwater biota. Pelagic-broadcast spawning cyprinids require moving water and some length of unfragmented stream to complete their life cycle. However, it is unknown how discharge and habitat features interact at multiple spatial scales to alter the transport of semi-buoyant fish eggs. Our objective was to assess the relationship between downstream drift of semi-buoyant egg surrogates (gellan beads) and discharge and habitat complexity. We quantified transport time of a known quantity of beads using 2–3 sampling devices at each of seven locations on the North Canadian and Canadian rivers. Transport time...
thumbnail
We used the United States National Grid to develop a sampling grid for monitoring programs in the Great Plains Landscape Conservation Cooperative, delineated by Bird Conservation Regions 18 and 19. Landscape Conservation Cooperatives are science based partnerships with the goal to inform and guide conservation at regional landscape levels. Developing a standardized sampling grid for a LCC is a new endeavor and is designed to reduce program costs, avoid repetition in sampling, and increase efficiency in monitoring programs. This is possible because the grid’s nationwide coverage, uniform starting point, and scalability allow researchers to expand their monitoring programs from a small, local level to a regional or...
thumbnail
Full life-cycle vulnerability assessments are identifying the effects of climate change on nongame migratory birds that are of conservation concern and breed in the upper Midwest and Great Lakes region. Full life-cycle analyses are critical, as current efforts likely underestimate the vulnerability of migratory land birds due to a focus on assessing only one component of the annual cycle. The approach provides a framework for integrating exposure to climate changes, sensitivity to these changes, and the potential for adaptation in both winter and summer seasons, and accounts for carry-over effects from one season to another. The results of this work will inform regional management by highlighting both local and...
thumbnail
Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass, productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000–2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region...
thumbnail
Biodiversity in stream networks is threatened globally by interactions between habitat fragmentation and altered hydrologic regimes. In the Great Plains of North America, stream networks are fragmented by 19,000 anthropogenic barriers, and flow regimes are altered by surface water retention and groundwater extraction. We documented the distribution of anthropogenic barriers and dry stream segments in five basins covering the central Great Plains to assess effects of broad-scale environmental change on stream fish community structure and distribution of reproductive guilds. We used an information-theoretic approach to rank competing models in which fragmentation, discharge magnitude, and percentage of time streams had...
thumbnail
Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass, productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000–2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region...
thumbnail
Rapid expansion of cropland threatens grassland ecosystems across western North America and broad-scaleplanning can be a catalyst motivating individuals and agencies to accelerate conservation. Sprague’s Pipit(Anthus spragueii) is an imperiled grassland songbird whose population has been declining rapidly in recent decades.Here, we present a strategic framework for conservation of pipits and their habitat in the northern GreatPlains.We modeled pipit distribution across its million-km2 breeding range in Canada and the U.S.We describefactors shaping distribution, delineate population cores and assess vulnerability to future grassland losses. Pipitsselected landscapes with a high proportion of continuous grassland...
thumbnail
With extraordinary resolution and accuracy, Light Detection and Ranging (LiDAR)-derived digital elevation models (DEMs) have been increasingly used for watershed analyses and modeling by hydrologists, planners and engineers. Such high-accuracy DEMs have demonstrated their effectiveness in delineating watershed and drainage patterns at fine scales in low-relief terrains. However, these high-resolution datasets are usually only available as topographic DEMs rather than hydrologic DEMs, presenting greater land roughness that can affect natural flow accumulation. Specifically, locations of drainage structures such as road culverts and bridges were simulated as barriers to the passage of drainage. This paper proposed...
thumbnail
In practice, there are a number of challenges associated with formal consideration of the environment in water planning in large parts of the Desert LCC region. In Arizona, for example, there is no legal requirement to include the environment in water management or planning efforts (Megdal et al. 201 0). Therefore, there is little incentive to develop the additional tools and resources required to include the environment as a water demand sector. Appropriate inclusion of the environment into water planning requires conducting planning at a scale and geography that matches regional hydrology rather than political boundaries. Therefore, without explicit policy guidance from state government, regional stakeholders...
thumbnail
Comprehensive wetland inventories are an essential tool for wetland management, but developing and maintaining an inventory is expensive and technically challenging. Funding for these efforts has also been problematic. Here we describe a large-area application of a semi-automated processused to update a wetland inventory for east-central Minnesota. The original inventory for this area was the product of a laborintensive, manual photo-interpretation process. The present application incorporated high resolution, multi-spectral imagery from multiple seasons; high resolution elevation data derived from lidar; satellite radar imagery; and other GIS data. Map production combined image segmentation and random forest classification...
thumbnail
Conservation planning aims to optimize outcomes for select species or ecosystems by directing resources toward high-return sites. The possibility that local benefits might be increased by directing resources beyond the focal area is rarely considered. We present a case study of restoring river connectivity for migratory fish of the Great Lakes Basin by removing dams and road crossings within municipal jurisdictions versus their broader watersheds. We found that greater river connectivity could often be achieved by considering both intra-jurisdictional and extra-jurisdictional barriers. Focusing on jurisdictional barriers alone generally forfeited <20 (median = 0%) of habitat gains for those who value solely habitat...
thumbnail
The habitats and food resources required to support breeding and migrant birds dependent on North American prairie wetlands are threatened by impending climate change. The North American Prairie Pothole Region (PPR) hosts nearly 120 species of wetland-dependent birds representing 21 families. Strategic management requires knowledge of avian habitat requirements and assessment of species most vulnerable to future threats. We applied bioclimatic species distribution models (SDMs) to project range changes of 29 wetland-dependent bird species using ensemble modeling techniques, a large number of General Circulation Models (GCMs), and hydrological climate covariates. For the U.S. PPR, mean projected range change, expressed...
thumbnail
Estimating species abundance is important for land managers, especially for monitoringconservation efforts. The two main survey methods for estimating avian abundance are point counts and transects. Previous comparisons of these two methods have either been limited to a single species or have not included detection probability. During the 2012 breeding season, we compared and assessed the efficiency (precision for amount of effort) of point count time of detection (PCTD) and dependent double-observer transect (TRMO) methods based on detection probabilities and abundance estimates of five species of songbirds that use a range of habitats in a prairie system in Montana dominated by sagebrush and grassland vegetation....
thumbnail
We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly...
thumbnail
Intrafragment ecology is little studied for imperiled riverine fishes although river fragmentation and habitat loss increasingly threaten sensitive species. A long-term population-monitoring program in the Pecos River, New Mexico, provided detailed data for 15 annual cohorts of speckled chub (Macrhybopsis aestivalis), which were used to assess intrafragment patterns in recruitment and year-class strength in relation to distributional patterns, flow-regime characteristics, and air temperature. Cohorts avoided a degraded upstream reach. Age-1 and older individuals had distributions consistently centered within a central, relict-ecosystem reach that contained high-quality habitat. Age-0 individuals were widespread...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Arkansas River shiner (Notropis girardi), Arkansas River shiner (Notropis girardi), CATFISHES/MINNOWS, Climate Change, Climate Change, All tags...
thumbnail
In the expectation that global climate will change steadily in the coming decades, this research project had the goal to obtain a more detailed view of the climatic changes that Hawai’i could experience by the mid and late 21st century. Given the importance of rainfall for Hawaiian ecosystems and freshwater reserves, this project investigated past seasonal rainfall pattern and developed a statistical model to estimate future rainfall changes for the major islands. As a result of this research, high-resolution maps and data are now available that researchers can use to study potential impacts on endangered species, or use the rainfall changes as input in decision-support tools.This data product provides data files...
This data package contains tables summarizing data collected during standardized gill net sampling conducted since 1957 and is part of the collection "Cornell Oneida Lake Data". The Cornell Biological Field Station (CBFS) serves as a primary field site for aquatic research at Cornell University (more information can be found at http://cbfs.dnr.cornell.edu/index.html) and is part of the Department of Natural Resources, College of Agriculture and Life Sciences. The centerpiece of the station's research program is a 60-year database on the food web of Oneida Lake, New York, that has been collected with support from the Cornell University Brown Endowment and from the New York State Department of Environmental Conservation....