Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Categories: Data (X) > Types: Citation (X) > Categories: Map (X)

13 results (41ms)   

View Results as: JSON ATOM CSV
thumbnail
This raster depicts the percentage of lithological the hydraulic conductivity (in micrometers per second) of surface or near surface geology. We derived these rasters by calculating the average conductivity for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater...
thumbnail
This raster depicts the percentage of lithological magnesium oxide (MgO) content in surface or near surface geology. We derived these rasters by calculating the average percent MgO content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from...
thumbnail
This raster depicts the percentage of lithological aluminum oxide (Al2O3) content in surface or near surface geology. We derived these rasters by calculating the average percent Al2O3 content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from...
thumbnail
This raster depicts the percentage of lithological the compressive strength, measured as uniaxial compressive strength (in megaPascals, MPa) of surface or near surface geology. We derived these rasters by calculating the average strength for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map...
thumbnail
The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term...
Categories: Data, Map; Types: Citation; Tags: Agricultural Research Service, Alabama (AL), Alaska (AK), American Samoa (AS), Arizona (AZ), All tags...
thumbnail
This raster depicts the percentage of lithological nitrogen (N) content in surface or near surface geology. We derived these rasters by calculating the average percent N content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from Soller et...
thumbnail
This raster depicts the percentage of lithological sulfur (S) content in surface or near surface geology. We derived these rasters by calculating the average percent S content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from Soller et al....
thumbnail
This raster depicts the percentage of lithological phosphorus pentoxide (P2O5) content in surface or near surface geology. We derived these rasters by calculating the average percent P2O5 content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet...
thumbnail
This raster depicts the percentage of lithological silicon dioxide (SiO2) content in surface or near surface geology. We derived these rasters by calculating the average percent SiO2 content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from...
thumbnail
This raster depicts the percentage of lithological calcium oxide (CaO) content in surface or near surface geology. We derived these rasters by calculating the average percent CaO content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from...
thumbnail
This raster depicts the percentage of lithological sodium oxide (Na2O) content in surface or near surface geology. We derived these rasters by calculating the average percent Na2O content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from...
thumbnail
This raster depicts the percentage of lithological ferric oxide (Fe2O3) content in surface or near surface geology. We derived these rasters by calculating the average percent Fe2O3 content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from...
thumbnail
This raster depicts the percentage of lithological potassium oxide (K2O) content in surface or near surface geology. We derived these rasters by calculating the average percent K2O content for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from...


    map background search result map search result map Geochemical Characteristics of the Conterminous United States: % CaO Geochemical Characteristics of the Conterminous United States: % MgO Geochemical Characteristics of the Conterminous United States: % P2O5 Geophysical Characteristics of the Conterminous United States: Uniaxial Compressive Strength (MPa) Geophysical Characteristics of the Conterminous United States: Hydraulic Conductivity (µm/s) Geochemical Characteristics of the Conterminous United States: % Sulfur Geochemical Characteristics of the Conterminous United States: % SiO2 Geochemical Characteristics of the Conterminous United States: % Na2O Geochemical Characteristics of the Conterminous United States: % K2O Geochemical Characteristics of the Conterminous United States: % Al2O3 Geochemical Characteristics of the Conterminous United States: % Fe2O3 Geochemical Characteristics of the Conterminous United States: % Nitrogen Geochemical Characteristics of the Conterminous United States: % CaO Geochemical Characteristics of the Conterminous United States: % MgO Geochemical Characteristics of the Conterminous United States: % P2O5 Geophysical Characteristics of the Conterminous United States: Uniaxial Compressive Strength (MPa) Geophysical Characteristics of the Conterminous United States: Hydraulic Conductivity (µm/s) Geochemical Characteristics of the Conterminous United States: % Sulfur Geochemical Characteristics of the Conterminous United States: % SiO2 Geochemical Characteristics of the Conterminous United States: % Na2O Geochemical Characteristics of the Conterminous United States: % K2O Geochemical Characteristics of the Conterminous United States: % Al2O3 Geochemical Characteristics of the Conterminous United States: % Fe2O3 Geochemical Characteristics of the Conterminous United States: % Nitrogen