Skip to main content
Advanced Search

Filters: Types: ArcGIS Service Definition (X) > Tags: {"scheme":"https://www.sciencebase.gov/vocab/vocabulary/54760ef9e4b0f62cb5dc41a0"} (X) > Types: OGC WMS Layer (X)

50 results (16ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tags (with Scheme=https://www.sciencebase.gov/vocab/vocabulary/54760ef9e4b0f62cb5dc41a0)
View Results as: JSON ATOM CSV
thumbnail
The Desert Landscape Conservation Cooperative Land Cover Map shows land cover at a regional scale (1:2,500,000). The files provided are graphic design files that can be used to plot a publication-quality, poster-size map.Scale: 1:2,500,000 Map poster dimensions: 34 x 44 inches Data sources:Land cover from North American Environmental Atlas by the Commission for Environmental Cooperation, 2010. Physiographic regions from Natural Earth 1:10 million scale Physical Labels (3.0.0) derived from Patterson’s Physical Map of the World, 2008. Hydrography, populated places, and political boundaries from National Atlas of the United States, 2004. File descriptions: DLCC_LandCover.ai is an Adobe Illustrator file. DLCC_LandCover.pdf...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, Conservation NGOs, DATA ANALYSIS AND VISUALIZATION, Data, Data.gov Desert Landscape Conservation Cooperative, All tags...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
The SRLCC provided funds to the states of Arizona and New Mexico to support development of the states Crucial Habitat Assessment Tools (CHATs) which provide a decision support system to better incorporate wildlife values, sensitive animals and plants, and important ecosystem features into land use decision-making to reduce conflicts and surprises.Several states have released wildlife mapping tools that are the foundation for displaying crucial wildlife and corridor information. The state and regional CHATs are non-regulatory, and give project planners and the general public access to credible scientific data on a broad scale for use in project analysis, siting and planning. This includes large-scale development...
Categories: Data, Project; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: AZ-01, AZ-02, AZ-03, AZ-04, AZ-05, All tags...
thumbnail
This layer represents 5-year relative counts of wildlife carcasses collected by Montana Department of Transportation (MDT) maintenance personnel or U.S. Fish & Wildlife Service Grizzly Bear Recovery Team personnel on or adjacent to on-system (major) routes from 2008 to 2012. To obtain relative counts, the 5-year total counts per mile, which included all wildlife species observed, were divided by the maximum observed calue (98) to give a relative 0-1 risk score. Total counts, which include all wildlife species observed, along with carnivore counts, which include only black bears, grizzly bears, mountain lions, and wolves, are provided. Counts were derived by identifying the nearest mile marker to each carcass point...
thumbnail
This project identifies priority areas in the Columbia Plateau Ecoregion to implement conservation strategies for riverine and riparian habitat. This is tailored towards the Arid Lands Initiative (ALI) conservation goals and objectives, and provides the foundation for adaptation to a changing climate. This project adopts a “zoned” approach to identifying focal areas, connectivity management zones and zones for riparian habitat and ecological representation. Through a series of workshops and webinars, the ALI articulated its freshwater conservation goals and targets. Key aspects of these goals included: a focus on non-anadromous salmonid (salmon and steelhead) species, include riparian birds and waterfowl as key...
thumbnail
These case study sites are detailed in the report accompanying this data layer. The case studies are intended to serve as examples of how some of the opportunities for diverse stakeholders to engage in the process of mitigating road impacts on wildlife that are described in the report might be applied on the ground, as well as other considerations that come into play in selecting sites for possible mitigation and designing mitigation solutions for those sites. Through these case studies, we illustrate potential opportunities for mitigation and partner engagement for each of the four alternative priority sets identified in this study.Wildlife carcasses recorded by Montana Department of Transportation, Idaho Department...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Shapefile; Tags: AADT, AADT, Carnivores, Carnivores, Connectivity, All tags...
thumbnail
This project identifies priority areas in the Columbia Plateau Ecoregion to implement conservation strategies for riverine and riparian habitat. This is tailored towards the Arid Lands Initiative (ALI) conservation goals and objectives, and provides the foundation for adaptation to a changing climate. This project adopts a “zoned” approach to identifying focal areas, connectivity management zones and zones for riparian habitat and ecological representation. Through a series of workshops and webinars, the ALI articulated its freshwater conservation goals and targets. Key aspects of these goals included: a focus on non-anadromous salmonid (salmon and steelhead) species, include riparian birds and waterfowl as key...
thumbnail
These layers show land ownership and status of all Canadian and U.S. lands that fall within the boundaries of the Great Northern Landscae Conservation Cooperative. Layers were compiled from various sources, each with it’s own metadata reference file.
thumbnail
This dataset features suitable habitat at discharges from 15,000 cfs to 100,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. Depth rasters were exported from HEC-RAS 5.0.0. Since the lower section had large over- and underestimates, depth values were sampled along the intersection...
thumbnail
Desert Landscape Conservation Cooperative Boundary delineates the spatial extent of the DLCC. The vector boundary is available as both a shapefile and KML file. This is a derivative product of the LCCs shapefile produced by the U.S. Fish and Wildlife Service, accessed from http:/http://www.fws.gov/GIS/data/national/ in 2014.To access the KML file, click on the ScienceBase URL and then select Open in Google Earth (KML). To access the shapefile (FWS_LCC_DLCC.shp), click on FWS_LCC_DLCC.zip linked from this product profile.
thumbnail
This project will conduct a synthesis of marine spatial data. An OPS staff will be hired to work with marine/coastal experts – to develop a Technical Advisory Group and gather data and input on the processes used in the marine assessment. Additionally, this project will identify key inland (terrestrial and freshwater) areas that currently have or may have in the future direct and indirect impacts on the health of the marine environment. Results of this project will be the basis for the marine component of the Landscape Conservation Design being developed by the Peninsular Florida Landscape Conservation Cooperative. Every effort will be made to build upon existing science and other ongoing projects that may be developing...
thumbnail
This dataset features inundated areas at discharges from 15,000 cfs to 100,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. To model river stage specific inundation for the upper section, discharge for each Landsat 8 overpass date was entered as the upstream condition and the corresponding...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
This dataset features suitable habitat connected to the main channel (based on floodplain inundation) within managed areas at discharges from 15,000 cfs to 100,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. Depth rasters were exported from HEC-RAS 5.0.0. Since the lower section...
thumbnail
Wildlife carcasses recorded by Montana Department of Transportation, Idaho Department of Fish & Game, and U.S. Fish & Wildlife Service were aggregated to the nearest mile marker for major roads of the U.S. Northern Rockies. WGA connectivity flowlines were intersected with the road network and attributed to the nearest mile marker, along with their connectivity ranking, which indicates their expected relative importance to maintaining westwide connectivity. Values for potential risk factors, including average annual daily traffic (AADT), functional class, number of lanes, road surface width, landscape condition of surrounding habitat, ruggedness of surrounding landscape, and topographic position relative to surrounding...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Shapefile; Tags: AADT, AADT, Carnivores, Carnivores, Connectivity, All tags...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
This dataset features suitable depth (0.2 m ≤ depth ≤ 2.0 m) at discharges from 15,000 cfs to 100,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. Depth rasters were exported from HEC-RAS 5.0.0. Since the lower section had large over- and underestimates, depth values were sampled...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...


map background search result map search result map Boundary Dataset Support to Western States Crucial Habitat Assessment Tools Road-Killed Wildlife Carcass Frequency by Mile of Montana On-System Routes in the U.S. Northern Rockies (2008-2012) Case Study Sites for Prioritizing Mitigation of Road Impacts on Western Governors' Association Wildlife Corridors Land Cover Map Road-Killed Wildlife Carcass Frequency, Connectivity Value, and Potential Risk Factors by Mile Segment of U.S. Northern Rockies Major Roads (2008-2012) GNLCC Jurisdictional Boundaries Appalachian LCC Landscape Conservation Design Phase 1 Regional Cores Appalachian LCC Landscape Conservation Design Phase 1 Local Build-outs Appalachian LCC Landscape Conservation Design Phase 1 Local Cores Appalachian LCC Landscape Conservation Design Phase 1 Regional Linkages Percent catchment under crop-rivers Amount of inflow stored in upstream dams-rivers ALI Priority areas as linear networks (Figure 12) Selection frequency score Figure(6) Marine Priority Resources Map River stage-specific GIS data layers depicting suitable habitat for Alligator Gar spawning in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable connected habitat for Alligator Gar spawning within managed areas in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable depth for Alligator Gar spawning in the lower Trinity River of Texas River stage-specific GIS data layers depicting floodplain inundation in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable habitat for Alligator Gar spawning in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable depth for Alligator Gar spawning in the lower Trinity River of Texas River stage-specific GIS data layers depicting floodplain inundation in the lower Trinity River of Texas ALI Priority areas as linear networks (Figure 12) Selection frequency score Figure(6) Road-Killed Wildlife Carcass Frequency, Connectivity Value, and Potential Risk Factors by Mile Segment of U.S. Northern Rockies Major Roads (2008-2012) Road-Killed Wildlife Carcass Frequency by Mile of Montana On-System Routes in the U.S. Northern Rockies (2008-2012) Case Study Sites for Prioritizing Mitigation of Road Impacts on Western Governors' Association Wildlife Corridors Marine Priority Resources Map Support to Western States Crucial Habitat Assessment Tools Appalachian LCC Landscape Conservation Design Phase 1 Local Build-outs Appalachian LCC Landscape Conservation Design Phase 1 Regional Linkages Appalachian LCC Landscape Conservation Design Phase 1 Local Cores Appalachian LCC Landscape Conservation Design Phase 1 Regional Cores Percent catchment under crop-rivers Amount of inflow stored in upstream dams-rivers Boundary Dataset Land Cover Map GNLCC Jurisdictional Boundaries