Skip to main content
Advanced Search

Filters: Types: Citation (X) > Tags: {"scheme":"USGS Thesaurus"} (X) > Types: Map Service (X)

1,256 results (20ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tags (with Scheme=USGS Thesaurus)
View Results as: JSON ATOM CSV
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows, which are the largest volcanic hazards for Mount Adams and Mount Baker. Evaluating the hazards associated with such alteration is difficult because much of the alteration is obscured by ice and its depth extent is unknown. Intense hydrothermal alteration significantly reduces the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks are identified with helicopter electromagnetic and magnetic measurements at Mount Baker and Mount Adams. High resolution magnetic and electromagnetic...
thumbnail
This dataset contains reflectance and transmission spectra of unexpanded and expanded vermiculite ore, and handpicked flakes of phlogopite, hydrobiotite, and vermiculite. These samples were collected from mines near Enoree, South Carolina; Libby, Montana; Louisa, Virginia; Palabora, Llano, Texas; and South Africa. Spectra are identified as either reflectance or transmission in the alphanumeric file names and correlate to specpr record numbers designated in the manuscript figures in which they are shown. These transmission spectra were converted to absorbance in many of the figures. Spectra of talc, fibrous richterite amphibole, and serpentine are from well characterized samples from Feiser Mine, Ruby Mountains,...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
​The basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
Hillshade of lidar-derived, bare earth digital elevation model, with 235-degree azimuth and 20-degree sun angle, 0.25m resolution, depicting earthquake effects following the August 24, 2014 South Napa Earthquake.
thumbnail
Region(s) of distribution of Hamecon (Artediellus scaber) Knipowitsch, 1907 in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic seas where reliable...
thumbnail
Region(s) of distribution of Saffron Cod (Eleginus gracilis) (Tilesius, 1810) in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic seas where...
thumbnail
Region(s) of distribution of Fourhorn Poacher (Hypsagonus quadricornis) (Valenciennes, 1829) in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic...
thumbnail
Region(s) of distribution of Fourhorn Sculpin (Myoxocephalus quadricornis) (Linnaeus, 1758) in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic...
thumbnail
Region(s) of distribution of Eyeshade Sculpin (Nautichthys pribilovius) (Jordan & Gilbert, 1898) in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent...
thumbnail
Region(s) of distribution of Chinook Salmon (Oncorhynchus tshawytscha) (Walbaum, 1792) in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic seas...
thumbnail
Region(s) of distribution of Inconnu (Stenodus leucichthys) (Güldenstadt, 1772) in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic seas where...
thumbnail
The Sandy Hook artificial reef, located on the sea floor offshore of Sandy Hook, New Jersey was built to create habitat for marine life. The reef was created by the placement of heavy materials on the sea floor; ninety-five percent of the material in the Sandy Hook reef is rock. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the U.S. Army Corps of Engineers when the Creed was in the New York region in April 2000, was to map the bathymetry and backscatter intensity of the sea floor in the area of the Sandy Hook artificial reef. The collected...


map background search result map search result map Cave and Karst Biota Modeling in the Appalachian LCC - Predicted Amphipods in sampled 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted spiders in all 20km grid cells in karst Cave and Karst Biota Modeling in the Appalachian LCC - Predicted endemics in sampled 20km grid cells Geospatial Bathymetry Dataset and Elevation-Area-Capacity Table for Neversink Reservoir, 2014 Elevation Contours, Cannonsville Reservoir, 2015 Echosounder Quality Assurance Points, Neversink Reservoir, 2014 Echosounder Quality Assurance Points, Rondout Reservoir, 2013 to 2014 Elevation Raster, Cannonsville Reservoir, 2015 Hillshade raster (235-degree azimuth, 20-degree sun angle) derived from lidar data collected after the August 24, 2014 South Napa earthquake Spectra Used in Figures Marine Arctic point distribution of Fourhorn Poacher (Hypsagonus quadricornis) (Valenciennes, 1829) Marine Arctic polygon distribution of Eyeshade Sculpin (Nautichthys pribilovius) (Jordan & Gilbert, 1898) Marine Arctic polygon distribution of Chinook Salmon (Oncorhynchus tshawytscha) (Walbaum, 1792) Marine Arctic polygon distribution of Inconnu (Stenodus leucichthys) (Güldenstadt, 1772) Areas of uncertainty for flood inundation extents at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_breach.shp) Mount Adams Electromagnetic and Magnetic Data GeoTIFF image of the backscatter intensity of the sea floor of the Sandy Hook artificial reef (2-m resolution, Mercator, WGS 84) GeoTIFF image of the backscatter intensity of the sea floor of the Sandy Hook artificial reef (2-m resolution, Mercator, WGS 84) Geospatial Bathymetry Dataset and Elevation-Area-Capacity Table for Neversink Reservoir, 2014 Echosounder Quality Assurance Points, Neversink Reservoir, 2014 Echosounder Quality Assurance Points, Rondout Reservoir, 2013 to 2014 Areas of uncertainty for flood inundation extents at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_breach.shp) Hillshade raster (235-degree azimuth, 20-degree sun angle) derived from lidar data collected after the August 24, 2014 South Napa earthquake Elevation Contours, Cannonsville Reservoir, 2015 Elevation Raster, Cannonsville Reservoir, 2015 Mount Adams Electromagnetic and Magnetic Data Cave and Karst Biota Modeling in the Appalachian LCC - Predicted endemics in sampled 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted Amphipods in sampled 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted spiders in all 20km grid cells in karst Marine Arctic polygon distribution of Inconnu (Stenodus leucichthys) (Güldenstadt, 1772) Spectra Used in Figures Marine Arctic point distribution of Fourhorn Poacher (Hypsagonus quadricornis) (Valenciennes, 1829) Marine Arctic polygon distribution of Eyeshade Sculpin (Nautichthys pribilovius) (Jordan & Gilbert, 1898) Marine Arctic polygon distribution of Chinook Salmon (Oncorhynchus tshawytscha) (Walbaum, 1792)