Skip to main content
Advanced Search

Filters: Types: Citation (X) > Tags: {"type":"Organization"} (X) > partyWithName: Northwest CSC (X)

100 results (73ms)   

View Results as: JSON ATOM CSV
Abstract (from http://www.nature.com/articles/srep24441): The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent climate projections derived from 20 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). We find that future climate change may result in a significant reduction in water yield but an increase in ecosystem productivity in NFs. On average, gross ecosystem productivity...
This recorded presentation is from the April 17, 2014 workshop for the "Integrated Scenarios of the Future Northwest Environment" project. The recording is available on YouTube. The Integrated Scenarios project is an effort to understand and predict the effects of climate change on the Northwest's climate, hydrology, and vegetation. The project was funded by the Northwest Climate Science Center and the Climate Impacts Research Consortium.
Monthly temperature and precipitation data from 41 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) were compared to observations for the 20th century, with a focus on the U.S. Pacific Northwest (PNW) and surrounding region. A suite of statistics, or metrics, was calculated, including correlation and variance of mean seasonal spatial patterns, amplitude of seasonal cycle, diurnal temperature range, annual- to decadal-scale variance, long-term persistence, and regional teleconnections to El Niño Southern Oscillation (ENSO). Performance, or credibility, was assessed based on the GCMs' abilities to reproduce the observed metrics. GCMs were ranked in their credibility using two...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/hyp.10964/abstract): While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modelling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, Distributed Hydrology Soil Vegetation Model-Water Quality (DHSVM-WQ), is an outgrowth of DHSVM that incorporates modules for assessing hydrology and water quality in urbanized watersheds...
Wildfire refugia are forest patches that are minimally-impacted by fire and provide critical habitats for fire-sensitive species and seed sources for post-fire forest regeneration. Wildfire refugia are relatively understudied, particularly concerning the impacts of subsequent fires on existing refugia. We opportunistically re-visited 122 sites classified in 1994 for a prior fire refugia study, which were burned by two wildfires in 2012 in the Cascade mountains of central Washington, USA. We evaluated the fire effects for historically persistent fire refugia and compared them to the surrounding non-refugial forest matrix. Of 122 total refugial (43 plots) and non-refugial (79 plots) sites sampled following the 2012...
Public Summary: The area burned by wildfires is expected to increase in many watersheds of the world over the next century as a function of climate change. Increased sedimentation due to soil erosion in burned watersheds can negatively impact downstream aquatic ecosystems and the quality and supply of water. At least 65% of the water supply in the western USA originates in watersheds covered by trees, shrubs, and/or grasses that are prone to wildfire16. Understanding how changing fire frequency, extent, and location will affect watersheds, reservoirs, and the ecosystem services they supply to communities is therefore of great societal importance. A primary threat to socio-ecological systems in this region from...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/hyp.11144/full): The extensive forests that cover the mountains of the Pacific Northwest, USA, modify snow processes and therefore affect snow water storage as well as snow disappearance timing. However, forest influences on snow accumulation and ablation vary with climate, topography, and land cover and are therefore subject to substantial temporal and spatial variability. We utilize multiple years of snow observations from across the region to assess forest-snow interactions in the relatively warm winter conditions characteristic of the maritime and maritime-continental climates. We (1) quantify the difference in snow magnitude and disappearance timing...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2015WR017873/abstract): Spatially distributed snow depth and snow duration data were collected over two to four snow seasons during water years 2011–2014 in experimental forest plots within the Cedar River Municipal Watershed, 50 km east of Seattle, Washington, USA. These 40 × 40 m forest plots, situated on the western slope of the Cascade Range, include unthinned second-growth coniferous forests, variable density thinned forests, forest gaps in which a 20 m diameter (approximately equivalent to one tree height) gap was cut in the middle of each plot, and old-growth forest. Together, this publicly available data set includes snow depth and density observations...
Abstract (from http://www.publish.csiro.au/WF/WF16165): Interannual variability in burn severity is assessed across forested ecoregions of the western United States to understand how it is influenced by variations in area burned and climate during 1984–2014. Strong correlations (|r| > 0.6) between annual area burned and climate metrics were found across many of the studied regions. The burn severity of individual fires and fire seasons was weakly, but significantly (P < 0.05), correlated with burned area across many regions. Interannual variability in fuel dryness evaluated with fuel aridity metrics demonstrated weak-to-moderate (|r| >0.4) relationships with regional burn severity, congruent with but weaker than...
Streams are classified as perennial (flowing uninterrupted, year-round) or intermittent (flowing part of the year) or ephemeral (flowing only during rainfall events). The classifications of “streamflow permanence” were primarily established in the middle 20th century and are often outdated and inaccurate today if they were not adjusted for changes in land use, wildfires, or climate. Understanding where streams are perennial is important for a variety of reasons. For example, perennial streams receive special regulatory protections under a variety of statutes, and provide important habitat for fish, wildlife, and other species. To predict the likelihood that streams are perennial, we compiled nearly 25,000 observations...
Abstract: Restoration of degraded wet meadows found on upland valley floors has been proposed to achieve a range of ecological benefits, including augmenting late‐season streamflow. There are, however, few field and modelling studies documenting hydrologic changes following restoration that can be used to validate this expectation, and published changes in groundwater levels and streamflow following restoration are inconclusive. Here, we assess the streamflow benefit that can be obtained by wet‐meadow restoration using a physically based quantitative analysis. This framework employs a 1‐dimensional linearized Boussinesq equation with a superimposed solution for changes in storage due to groundwater upwelling and...
Greater sage-grouse (Centrocercus urophasianus) is a candidate for listing under the Endangered Species Act because of population and habitat fragmentation coupled with inadequate regulatory mechanisms to control development in critical areas. In addition to the current threats to habitat, each 1 degree celsius increase due to climate change is expected to result in an additional 87,000 km2 of sagebrush (Artemisia spp.) that will be converted to unsuitable habitat for sage-grouse. Thus, the future distribution and composition of sagebrush landscapes is likely to differ greatly from today’s configuration. We conducted a large, multi-objective project to identify: (1) characteristics of habitats required by sage-grouse,...
Final Report for the Third Annual Pacific Northwest Climate Science Conference
Categories: Publication; Types: Citation; Tags: Northwest CASC, conference
Abstract (from http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate2252.html): Climate change will decrease worldwide biodiversity through a number of potential pathways1, including invasive hybridization2 (cross-breeding between invasive and native species). How climate warming influences the spread of hybridization and loss of native genomes poses difficult ecological and evolutionary questions with little empirical information to guide conservation management decisions3. Here we combine long-term genetic monitoring data with high-resolution climate and stream temperature predictions to evaluate how recent climate warming has influenced the spatio-temporal spread of human-mediated hybridization between...
Climate change is expected to have different effects in different parts of the world. For this reason, regionally-specific projections of climate and environmental change are important to help those who need to plan how best to adapt. The goal of this project was to use the latest global climate models and state of the science models of vegetation and hydrology, to describe what the latest science says about the Northwest’s future climate, vegetation, and hydrology. Researchers in the project began by evaluating the ability of climate models to simulate observed climate patterns in the Northwest region. The best performing models were ‘downscaled’, that is, remapped onto the finer grids used in models of hydrology...
Abstract (from http://link.springer.com/article/10.1007%2Fs10584-016-1608-2): Many recent changes in tree species distributions, mortality, and growth rates have been linked to changes in climate. Managing forests in the face of climate change will require a basic understanding of which tree species will be most vulnerable to climate change and in what ways they will be vulnerable. We assessed the relative vulnerability to climate change of 11 tree species in western North America using a multivariate approach to quantify elements of sensitivity to climate change, exposure to climate change, and the capacity to adapt to climate change. Our assessment was based on a combination of expert knowledge, published studies,...
We assessed the performance of the MTCLIM scheme for estimating downward shortwave (SWdown) radiation and surface humidity from daily temperature range (DTR), as well as several schemes for estimating downward longwave radiation (LWdown), at 50 Baseline Solar Radiation Network stations globally. All of the algorithms performed reasonably well under most climate conditions, with biases and mean absolute errors generally less than 3% and 20%, respectively, over more than 70% of the global land surface. However, estimated SWdown had a bias of −26% at coastal sites, due to the ocean's moderating influence on DTR, and in continental interiors, SWdown had an average bias of −15% in the presence of snow, which was reduced...
Recently, climate projections from the 5th phase of The Coupled Model Intercomparison Project (CMIP5) have become available. A key change from CMIP3 to CMIP5 is the change in scenarios of projected greenhouse gas concentrations during the 21st century. Other notable advancements from CMIP3 to CMIP5 include finer spatial resolution, the prescription of land use change (past and future), and, for some global climate models, simulations of the carbon cycle and atmospheric chemistry. CMIP5 model runs indicate a warmer future in the Pacific Northwest than those from CMIP3, while both modeling experiments suggest a slightly wetter future.
This recorded presentation is from the April 17, 2014 workshop for the "Integrated Scenarios of the Future Northwest Environment" project. The recording is available on YouTube. The Integrated Scenarios project is an effort to understand and predict the effects of climate change on the Northwest's climate, hydrology, and vegetation. The project was funded by the Northwest Climate Science Center and the Climate Impacts Research Consortium.
Abstract (from http://www.hydrol-earth-syst-sci.net/21/1/2017/): The phase of precipitation when it reaches the ground is a first-order driver of hydrologic processes in a watershed. The presence of snow, rain, or mixed-phase precipitation affects the initial and boundary conditions that drive hydrological models. Despite their foundational importance to terrestrial hydrology, typical phase partitioning methods (PPMs) specify the phase based on near-surface air temperature only. Our review conveys the diversity of tools available for PPMs in hydrological modeling and the advancements needed to improve predictions in complex terrain with large spatiotemporal variations in precipitation phase. Initially, we review...