Skip to main content
Advanced Search

Filters: Types: Downloadable (X) > Types: Citation (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

1,014 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
Categories: Data; Types: Citation, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Bald Point State Park, CMGP, Coastal and Marine Geology Program, DSAS, Digital Shoreline Analysis System, All tags...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
This dataset represents ease of access to bottomland areas for vegetation treatments. Access may be by road, 4x4 near road, hike in by field crews or requiring overnight camping or raft access. Access is considered for each side of the river separately.
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The National Agricultural Statistics Service (NASS) Cropland Data Layers (CDL) are a series of commonly used crop cover maps for the conterminous United States (CONUS) that span from 2008-2013. In this investigation we wanted to expand the temporal coverage of the NASS CDL archive back to 2000 by creating yearly NASS CDL-like crop cover maps derived from a classification tree model algorithm. We used over 11 million crop sample records to train a classification tree algorithm and to develop a crop classification model (CCM). The model was used to create...
thumbnail
This is a model showing general habitat diversity, including both the structural and cover type diversity. See Open File Report, Rasmussen and Shafroth, Colorado River Conservation Planning for geoprocessing details.
thumbnail
Hillshade of lidar-derived, bare earth digital elevation model, with 235-degree azimuth and 20-degree sun angle, 0.25m resolution, depicting earthquake effects following the August 24, 2014 South Napa Earthquake.
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
This dataset represents the relative average amount of non-woody cover within 2 ha) of bottomland along the Colorado River from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
This dataset represents the variety (unique structural classes: water, bare, herbaceous, short shrubs, medium shrubs, short trees, tall trees) within 1 ha of bottomland areas. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation of ground qualities. Due to the "snapshot" nature of the aerial photos,...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
This map shows the channel boundary (2011) of the Colorado River mainstem between the Utah Colorado border and the upper pool of Lake Powell, Utah (146 miles). The channel boundary was mapped from public available NAIP imagery flown on June 28, 2011, when the river flow was 886 m3/s at the Cisco gage. The channel is subdivided into channel types: fast water (main channel, secondary channel), and still water types (backwater, isolated pool and tributary channel).
thumbnail
This dataset consists of short-term (~32 years) shoreline change rates for the north coast of Alaska between the U.S. Canadian Border and the Hulahula River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1978 and 2010. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate short-term rates.
thumbnail
This dataset consists of short-term (~31 years) shoreline change rates for the north coast of Alaska between the Point Barrow and Icy Cape. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1979 and 2010. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate short-term rates.
thumbnail
One of the largest hydraulic mines (1.6 km2) is located in California’s Sierra Nevada within the Humbug Creek watershed and Malakoff Diggins State Historic Park (MDSHP). MDSHP’s denuded and dissected landscape is composed of weathered Eocene auriferous sediments susceptible to chronic rill and gully erosion whereas block failures and debris flows occur in more cohesive terrain. This data release includes a 1992 digital surface model (DSM), 1992 orthophoto mosaic, masked orthophoto of the study area, 1992 ground cover classification, and 1992 pruned DSM with the vegetation bias removed. Stereo-photogrammetry was used to create a 1992 digital surface model (DSM) and orthophoto mosaic from archived aerial photographs....
thumbnail
One of the largest hydraulic mines (1.6 km2) is located in California’s Sierra Nevada within the Humbug Creek watershed and Malakoff Diggins State Historic Park (MDSHP). MDSHP’s denuded and dissected landscape is composed of weathered Eocene auriferous sediments susceptible to chronic rill and gully erosion whereas block failures and debris flows occur in more cohesive terrain. This data release includes a 2014 digital elevation model (DEM), a study area boundary, and a geomorphic map. The 2014 DEM was derived from an available aerial LiDAR dataset collected in 2014 by the California Department of Conservation. The geomorphic map was derived for the study area from using a multi-scale spatial analysis. A topographic...
thumbnail
The data contained in this report was compiled, modified, and analyzed for the Wyoming Landscape Conservation Initiative (WLCI) Integrated Assessment (IA). The WLCI is a long-term science based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale in southwest Wyoming while facilitating responsible energy development through local collaboration and partnerships. The IA is an integrated synthesis and analysis of WLCI resource values based on best available data and information collected from multiple agencies and organizations. It is a support tool for landscape-scale conservation planning and evaluation, and a data and analysis resource that can be used for addressing specific management...


map background search result map search result map Modeled conterminous United States Crop Cover datasets for 2012 WLCI - Important Agricultural Lands Assessment (Input Raster: Resource Index-Terrestrial-Agriculture-Important Agricultural Lands) Elevation Contours, Cannonsville Reservoir, 2015 Echosounder Quality Assurance Points, Neversink Reservoir, 2014 Echosounder Quality Assurance Points, Rondout Reservoir, 2013 to 2014 Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Louisiana Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Louisiana Shorelines of the Florida north (FLnorth) coastal region used in shoreline change analysis Conservation Planning for the Colorado River in Utah - Stillness of water for Bat Watering Model Conservation Planning for the Colorado River in Utah - General Diversity Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Diversity of All Structural Types for General Diversity Model Elevation Raster, Cannonsville Reservoir, 2015 Hillshade raster (235-degree azimuth, 20-degree sun angle) derived from lidar data collected after the August 24, 2014 South Napa earthquake Conservation Planning for the Colorado River in Utah - Open Areas for Open Land Species Model Conservation Planning for the Colorado River in Utah - Access to the Site for Relative Cost of Restoration Model Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for central North Carolina (NCcentral) Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Sheltered East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between the Point Barrow and Icy Cape Study Area Boundary Malakoff DIggins State Historic Park, California 1992 digital surface model Malakoff Diggins State Historic Park, California Study Area Boundary Malakoff DIggins State Historic Park, California Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for central North Carolina (NCcentral) 1992 digital surface model Malakoff Diggins State Historic Park, California Echosounder Quality Assurance Points, Neversink Reservoir, 2014 Echosounder Quality Assurance Points, Rondout Reservoir, 2013 to 2014 Hillshade raster (235-degree azimuth, 20-degree sun angle) derived from lidar data collected after the August 24, 2014 South Napa earthquake Elevation Contours, Cannonsville Reservoir, 2015 Elevation Raster, Cannonsville Reservoir, 2015 Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between the Point Barrow and Icy Cape Conservation Planning for the Colorado River in Utah - Stillness of water for Bat Watering Model Conservation Planning for the Colorado River in Utah - Open Areas for Open Land Species Model Conservation Planning for the Colorado River in Utah - General Diversity Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Diversity of All Structural Types for General Diversity Model Conservation Planning for the Colorado River in Utah - Access to the Site for Relative Cost of Restoration Model Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Sheltered East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Louisiana Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Louisiana Shorelines of the Florida north (FLnorth) coastal region used in shoreline change analysis WLCI - Important Agricultural Lands Assessment (Input Raster: Resource Index-Terrestrial-Agriculture-Important Agricultural Lands) Modeled conterminous United States Crop Cover datasets for 2012