Skip to main content
Advanced Search

Filters: Types: Journal Citation (X) > partyWithName: Garcia-Pichel, Ferran (X)

18 results (13ms)   

View Results as: JSON ATOM CSV
Strain CP2CT was isolated from biological soil crusts in the Colorado Plateau, USA. The isolate was aerobic, facultatively fermentative, Gram-negative, non-motile and red-pigmented (due to the presence of carotenoids), but did not contain bacteriochlorophyll a. The strain tested positive for catalase, oxidase and urease and was negative for lysine and ornithine decarboxylases and arginine dihydrolase. The major fatty acids present were C(18 : 1)omega7c and C(16 : 0). It had a high DNA G+C content of 75 mol%. Comparisons of 16S rRNA gene sequences identified bacteriochlorophyll a-producing strains of Paracraurococcus ruber (94.9 %), Craurococcus roseus (92.2 %) and Roseococcus thiosulfatophilus (92.3 %), as well...
Archaea are common and abundant members of biological soil crust communities across large-scale biogeographic provinces of arid North America. Regardless of microbial community development, archaeal populations averaged 2 � 107 16S rRNA gene copies per gram of soil, representing around 5% of the prokaryotic (total calculated bacterial and archaeal) numbers assessed by quantitative-PCR. In contrast, archaeal diversity, determined by denaturing gradient gel electrophoresis fingerprinting and clone libraries of 16S rRNA genes, was very restricted. Only six different phylotypes (all Crenarchaea) were detected, three of which were very dominant. Some phylotypes were widespread, while others were typical of Southern desert...
We characterized, at millimeter resolution, bacterial biomass, diversity, and vertical stratification of biological soil crusts in arid lands from the Colorado Plateau. Microscopic counts, extractable DNA, and plate counts of viable aerobic copiotrophs (VAC) revealed that the top centimeter of crusted soils contained atypically large bacterial populations, tenfold larger than those in uncrusted, deeper soils. The plate counts were not always consistent with more direct estimates of microbial biomass. Bacterial populations peaked at the immediate subsurface (1-2 mm) in light-appearing, young crusts, and at the surface (0-1 mm) in well-developed, dark crusts, which corresponds to the location of cyanobacterial populations....
Photosynthetic microbes, particularly cyanobacteria, that bore into carbonates are ancient biological players in various geologic phenomena such as the destruction of biogenic carbonates and coastal limestones, the reworking of carbonate sands and the cementation of microbialites. Their signatures are important tools for paleoenvironmental reconstruction, and they play a significant role in marine aquaculture. In spite of their geologic, environmental and economic importance, the mechanism by which they are able to excavate calcareous and calcophosphatic mineral substrates remains unknown. Excavation by acidulation, commonly thought to be a possible mechanism, constitutes nothing less than an apparent paradox, in...
Molecular methodologies were used to characterize fungal communities associated with lichen-dominated biological soil crusts (BSCs) at two sites on the Colorado Plateau (USA) in order to investigate their diversity and abundance, in relation to that of bacteria, as well as how these parameters corresponded to overall soil crust cover and the presence of anthropogenic disturbance. Fungal community diversity and composition were assessed with denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR amplified ribosomal genes and by sequencing. Quantitative PCR, specific for fungi as well as bacteria, was used to evaluate relative microbial densities. Two sites with similar soil characteristics, both of...
We used microsensors to characterize physicochemical microenvironments and photosynthesis occurring immediately after water saturation in two desert soil crusts from southeastern Utah, which were formed by the cyanobacteria Microcoleus vaginatus Gomont, Nostoc spp., and Scytonema sp. The light fields within the crusts presented steep vertical gradients in magnitude and spectral composition. Near-surface light-trapping zones were formed due to the scattering nature of the sand particles, but strong light attenuation resulted in euphotic zones only ca. 1 mm deep, which were progressively enriched in longer wavelengths with depth. Rates of gross photosynthesis (3.4?9.4 mmol O2�m?2�h?1) and dark respiration (0.81?3.1...
In order to assess the role of cyanobacteria in the formation and dynamics of microenvironments in microbial mats, we studied an experimental biofilm of a benthic, halotolerant strain, belonging to the Halothece cluster of cyanobacteria. The 12-week-old biofilm developed in a sand core incubated in a benthic gradient chamber under opposing oxygen and sulfide vertical concentration gradients. At the biofilm surface, and as a response to high light irradiances, specific accumulation of myxoxanthophyll was detected in the cells, consistent with the typical vertical distribution of sun versus shade species in nature. The oxygen turn-over in terms of gross photosynthesis and net productivity rates was comparable to oxygen...
We studied the microbial diversity of benthic cyanobacterial mats inhabiting a heavily polluted site in a coastal stream (Wadi Gaza) and monitored the microbial community response induced by exposure to and degradation of four model petroleum compounds in the laboratory. Phormidium- and Oscillatoria-like cyanobacterial morphotypes were dominant in the field. Bacteria belonging to different groups, mainly the Cytophaga-Flavobacterium-Bacteriodes group, the {gamma} and {beta} subclasses of the class Proteobacteria, and the green nonsulfur bacteria, were also detected. In slurry experiments, these communities efficiently degraded phenanthrene and dibenzothiophene completely in 7 days both in the light and in the dark....
We describe a population of colonial cyanobacteria (waterwarts) that develops as the dominant primary producer in a bottom-fed, O2-poor, warm spring in the Cuatro Ci�negas karstic region of the Mexican Chihuahuan Desert. The centimeter-sized waterwarts were suspended within a central, conically shaped, 6-m deep well by upwelling waters. Waterwarts were built by an Aphanothece-like unicellular cyanobacterium and supported a community of epiphytic filamentous cyanobacteria and diatoms but were free of heterotrophic bacteria inside. Sequence analysis of 16S rRNA genes revealed that this cyanobacterium is only distantly related to several strains of other unicellular cyanobacteria (Merismopedia, Cyanothece, Microcystis)....
A novel black yeast-like fungus, Exophiala crusticola, is described based on two closely related isolates from biological soil crust (BSC) samples collected on the Colorado Plateau (Utah) and in the Great Basin desert (Oregon), USA. Their morphology places them in the anamorphic genus Exophiala, having affinities to the family Herpotrichiellaceae (Ascomycota). Phylogenetic analysis of their D1/D2 large subunit nuclear ribosomal RNA (LSU nrRNA) gene sequences suggests that they represent a distinct species. The closest known putative relative to Exophiala crusticola is Capronia coronata Samuels, isolated from decorticated wood in Westland County, New Zealand. The holotype for Exophiala crusticola anam. nov. is UAMH...
1. The effects of phosphorus enrichment and grazing snails on a benthic microbial community that builds stromatolic oncolites were examined in an experiment at Rio Mesquites, Cuatro Ci�negas, Mexico. Chemical analyses of stream water samples indicated that overall atomic ratios of total nitrogen (N) to total phosphorus (P) were approximately 110, indicating a strong potential for P-limitation of microbial growth. 2. Phosphorus enrichment involved addition of 5 ?mol Na2HPO4 L-1 to streamside microcosms receiving intermittent inputs of stream water while grazer manipulation involved removal of the dominant grazer, the snail Mexithauma quadripaludium. After 7 weeks, we examined responses in organic matter content,...
Two bacterial strains, CP173-2(T) and CP1D(T), were isolated from biological soil crusts (BSCs) collected in the Colorado Plateau, USA. Both strains were pigmented, Gram-negative, non-motile rods and produced abundant mucus. They contained C(16 : 0), C(18 : 1)omega7c and C(14 : 0) 2-OH as the predominant cellular fatty acids, ubiquinone-10 as the isoprenoid quinone and sphingoglycolipid. Based on the above characteristics, the isolates were assigned to the family Sphingomonadaceae; 16 rRNA gene signature nucleotides placed them within the genus Sphingomonas. Strains CP173-2(T) and CP1D(T) had a 16S rRNA gene sequence similarity of 96.7 % with each other and 91.6-98.9 % sequence similarity with other species in the...
Thin, vertically structured topsoil communities that become ecologically important in arid regions (biological soil crusts or BSCs) are responsible for much of the nitrogen inputs into pristine arid lands. We studied N(2) fixation and ammonium oxidation (AO) at subcentimetre resolution within BSCs from the Colorado Plateau. Pools of dissolved porewater nitrate/nitrite, ammonium and organic nitrogen in wetted BSCs were high in comparison with those typical of aridosoils. They remained stable during incubations, indicating that input and output processes were of similar magnitude. Areal N(2) fixation rates (6.5-48 micromol C(2)H(2) m(-2) h(-1)) were high, the vertical distribution of N(2) fixation peaking close to...
Molecular methodologies were used to investigate free-living fungal communities associated with biological soil crusts (BSCs), along km-scale transects on the Colorado Plateau (USA). Two cyanobacteria-dominated crust types that did not contain significant lichen cover were examined. Fungal community diversity and composition were assessed with PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting and sequencing, and fungi-specific quantitative PCR was used to measure fungal population densities as compared with those of bacteria. Our results clearly indicate that free-living fungi, while ubiquitous in BSCs, are less diverse and contribute far less biomass than their bacterial counterparts. Biological...
Second only to water among limiting factors, nitrogen controls the fertility of most arid regions. Where dry and wet depositions are weak, as in the western US deserts, N inputs rely heavily on biological N(2) fixation. Topsoil cyanobacterial communities known as biological soil crusts (BSCs) are major N(2) fixation hot spots in arid lands, but the fate of their fixed N remains controversial. Using a combination of microscale and mesoscale process rate determinations, we found that, in spite of theoretically optimal conditions, denitrification rates in BSCs were paradoxically immaterial for nitrogen cycling. Denitrifier populations within BSCs were extremely low. Because of this absence of denitrification, and because...
The indole-alkaloid scytonemin is the most common and widespread sunscreen among cyanobacteria. Previous research has focused on its nature, distribution, ecology, physiology, and biochemistry, but its molecular genetics have not been explored. In this study, a scytonemin-deficient mutant of the cyanobacterium Nostoc punctiforme ATCC 29133 was obtained by random transposon insertion into open reading frame NpR1273. The absence of scytonemin under conditions of induction by UV irradiation was the single phenotypic difference detected in a comparative analysis of the wild type and the mutant. A cause-effect relationship between the phenotype and the mutation in NpR1273 was demonstrated by constructing a second scytoneminless...
thumbnail
Biological soil crusts (BSCs) are topsoil biosedimentary structures built by photosynthetic microbes commonly found today on arid soils. They play a role in soil stabilization and the fertility of arid lands, and are considered modern analogues of ancient terrestrial microbial communities. We determined the concentrations of four biogenic and 21 other elements, mostly metals, in surface soils that hosted BSCs, in the soils underneath those crusts, and in proximate but non-crusted surface soils. The samples were from six sites in the Colorado Plateau highlands and the Sonoran Desert lowlands. In spite of the variability in climate and geologic setting, we found statistically significant overall trends of enrichment...
Categories: Publication; Types: Citation, Journal Citation; Tags: Geobiology
The identity of the numerically dominant N(2)-fixing bacteria in biological soil crusts of the Colorado Plateau region and two outlying areas was determined using multiple approaches, to link the environmental diversity of nifH gene sequences to cultured bacterial isolates from the regions. Of the nifH sequence-types detected in soil crusts of the Colorado Plateau, 89% (421/473) were most closely related to nifH signature sequences from cyanobacteria of the order Nostocales. N(2)-fixing cyanobacterial strains were cultured from crusts and their morphotypes, 16S rRNA gene and nifH gene sequences were characterized. The numerically dominant diazotrophs in the Colorado Plateau crusts fell within three clades of heterocystous...


    map background search result map search result map Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land