Skip to main content
Advanced Search

Filters: Types: OGC WFS Layer (X) > Date Range: {"choice":"week"} (X) > Tags: {"type":"Keyword"} (X)

63 results (15ms)   

View Results as: JSON ATOM CSV
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
National Wildlife Refuges (NWRs) along the East Coast of the United States protect habitat for a host of wildlife species, while also offering storm surge protection, improving water quality, supporting nurseries for commercially important fish and shellfish, and providing recreation opportunities for coastal communities. Yet in the last century, coastal ecosystems in the eastern U.S. have been severely altered by human development activities as well as sea-level rise and more frequent extreme events related to climate change. These influences threaten the ability of NWRs to protect our nation’s natural resources and to sustain their many beneficial services. Through this project, researchers are collaborating with...
thumbnail
In the northern Gulf of Mexico, mangrove forests have been expanding their northern range limits in parts of Texas, Louisiana, and north Florida since 1989. In response to warming winter temperatures, mangroves, which are dominant in warmer climates, are expected to continue migrating northward at the expense of salt marshes, which fare better in cooler climates. The ecological implications and timing of mangrove expansion is not well understood, and coastal wetland managers need information and tools that will enable them to identify and forecast the ecological impacts of this shift from salt marsh to mangrove-dominated coastal ecosystems. To address this need, researchers will host workshops and leverage existing...
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
The Southeastern U.S. spans broad ranges of physiographic settings and contains a wide variety of aquatic systems that provide habitat for hundreds of endemic aquatic species that pose interesting challenges and opportunities for managers of aquatic resources, particularly in the face of climate change. For example, the Southeast contains the southernmost populations of the eastern brook trout and other cold-water dependent species. Climate change is predicted to increase temperatures in the South and is likely to have a substantial effect on extant populations of cold-water biota. Thus, aquatic managers are tasked with developing strategies for preserving cold-water dependent biota, such as eastern brook trout,...
thumbnail
Water scarcity is a growing concern in Texas, where surface water is derived almost entirely from rainfall. Changes in air temperature and precipitation patterns associated with global climate change are anticipated to regionally affect the quality and quantity of inland surface waters and consequently their suitability as habitat for freshwater life. In addition to directly affecting resident organisms and populations, these changes in physicochemical traits of aquatic habitats may favor the establishment of harmful invasive species. As conflicts over the use of water resources grow in intensity, this information will become important for fish and wildlife managers to anticipate impacts of climate change on trust...
thumbnail
Covering 120 million acres across 14 western states and 3 Canadian provinces, sagebrush provides critical habitat for species such as pronghorn, mule deer, and sage-grouse – a species of conservation concern. The future of these and other species is closely tied to the future of sagebrush. Yet this important ecosystem has already been affected by fire, invasive species, land use conversion, and now, climate change. In the western U.S., temperatures are rising and precipitation patterns are changing. However, there is currently a limited ability to anticipate the impacts of climate change on sagebrush. Current methods suffer from a range of weakness that limits the reliability of results. In fact, the current uncertainty...
thumbnail
Climate change is causing species to shift their phenology, or the timing of recurring life events such as migration and spawning, in variable and complex ways. This can potentially result in mismatches or asynchronies in food and habitat resources that negatively impact individual fitness, population dynamics, and ecosystem function. Numerous studies have evaluated phenological shifts in terrestrial species, particularly birds and plants, yet far fewer evaluations have been conducted for marine animals. This project sought to improve our understanding of shifts in the timing of seasonal migration, spawning or breeding, and biological development (i.e. life stages present, dominant) of coastal fishes and migratory...
thumbnail
We are seeking to better understand networks among resource managers with respect to developing plans for climate change adaptation. We are pursuing this through a network analysis based on a survey of federal resource management staff and scientists in the southwestern and Midwestern U.S. Originally planned, this study was conceived to cover the Southwest and North Central Climate Science Centers, as defined by the USGS. In practice, surveys are most easily distributed within regions as defined by the federal resource agencies. Unfortunately, there is no uniform set of regions. We have tried to be comprehensive in our survey and cover at least the North Central and Southwestern Region.
thumbnail
Quaking aspen populations are declining in much of the West due to altered fire regimes, competition with conifers, herbivory, drought, disease, and insect outbreaks. Aspen stands typically support higher bird biodiversity and abundance than surrounding habitat types, and maintaining current distribution and abundance of several bird species in the northern Great Basin is likely tied to the persistence of aspen in the landscape. This project examined the effects of climate change on aspen and associated bird communities by coupling empirical models of avian-habitat relationships with landscape simulations of vegetation community and disturbance dynamics under various climate change scenarios. Field data on avian...
thumbnail
Climate change will have sweeping impacts across the Northeast, yet there are key gaps in our understanding about whether species will be able to adapt to this changing environment. Results from this project will illuminate local and region-wide changes in forest ecosystems by studying the red-backed salamander, a species that is a strong indicator of forest conditions. This study identified habitat and forest characteristics that improve the resiliency of forest dwelling amphibians and other wildlife to climate change. Further, by studying a foundational species in forest floor ecosystems, the scientists can use the information to make inferences about rare and declining species. The researchers studied multiple...
thumbnail
Coral reefs are some of the most biologically rich and economically valuable ecosystems in the world. They provide food, fishing, and recreation opportunities for millions of people, protect coastlines from storms, and shelter thousands of plant and animal species. However, climate change is contributing to the degradation of coral reefs in two significant ways: warming temperature and increasing acidification of ocean waters. Scientists are actively working to gather more specific information about how these factors will impact coral reef ecosystems. The purpose of this study was to identify differences in climate vulnerability among three important reef-building coral species in the Florida Keys. Researchers...
thumbnail
There have been increasing concerns regarding the decline in moose numbers along the southern range of their North American distribution. This has prompted varied research efforts to determine the factors contributing to the reduced local populations. Although heat stress from increasing temperatures could be a potential factor for declining populations in Minnesota, temperature increases have also occurred in New York, Massachusetts, and Connecticut where populations have been expanding in recent years. Alternatively, indirect climate effects from warmer temperatures may be playing a role, such as increased prevalence of parasites (e.g., brainworm, winter tick) to levels lethal to moose. Additionally, factors such...
thumbnail
As glaciers melt from climate change, their contents – namely, large quantities of freshwater, sediment, and nutrients – are slowly released into coastal ecosystems. This project addressed the impacts of melting glaciers on coastal ecosystems in the Copper River region of the Gulf of Alaska, which is home to several commercially important fisheries. Researchers examined how glacial melting is altering the amount and timing of freshwater that enters the Gulf of Alaska from the Copper River. They also investigated the source and amount of two nutrients, iron and nitrate, dissolved in the water. As a complementary piece of the study, researchers tested the relationship between nutrient levels, plankton populations,...
thumbnail
The forests of the Northeastern United States are home to some of the greatest diversity of nesting songbirds in the country. Climate change, shifts in natural disturbance regimes, and invasive species pose threats to forest habitats and bird species in the northeastern United States and represent major challenges to natural resource managers. Although broad adaptation approaches have been suggested for sustaining forested habitats under global change, it is unclear how effective the implementation of these strategies at local and regional scales will be for maintaining habitat conditions for a broad suite of forest-dependent bird species over time. Moreover, given the diversity in forest stakeholders across the...
thumbnail
Climate change doesn’t just threaten our natural resources—it threatens our cultural resources, too. Cultural resources represent evidence of past human activity, such as archeological sites, or are of significance to a group of people traditionally associated with the resource, such as Native American ceremonial sites. Climate change is challenging the long-term persistence of many cultural resources. For example, those located in coastal areas, such as historic lighthouses, are threatened by sea-level rise, shoreline erosion, and more frequent severe storm events. While climate change challenges managers of both natural and cultural resources to make decisions in the face of uncertainty, far less work has been...
thumbnail
In the Southeast, where rapid human development is increasingly dividing natural areas, habitat fragmentation and loss threaten the health and even genetic viability of wildlife populations, and interrupt migration routes. Climate change is projected to exacerbate fragmentation by further disrupting landscapes. To make matters worse, it is also expected to shift the range of many species, forcing animals capable of adapting by moving to expand into new areas to find more suitable temperatures and adequate food supplies – a challenge made difficult, if not impossible, by disconnected landscapes. Maintaining connectivity between habitats is a key strategy for conserving wildlife populations into the future, and sound...
thumbnail
Climate in the southeastern U.S. is predicted to be changing at a slower rate than other parts of North America; however, land use change associated with urbanization is having a significant effect on wildlife populations and habitat availability. We sought to understand the effect of global warming on both beneficial and pest insects of trees. We used urban warming as a proxy for global warming in as much as many cities have already warmed as much, due to heat island effects, as they are expected to warm due to climate change by 2050 or even 2100. We were able to develop good predictive models of how warming influences beneficial and pest insects for cities in the Southeast and across the east coast more generally....
thumbnail
Climate change is expected to alter stream temperature and flow regimes over the coming decades, and in turn influence distributions of aquatic species in those freshwater ecosystems. To better anticipate these changes, there is a need to compile both short- and long-term stream temperature data for managers to gain an understanding of baseline conditions, historic trends, and future projections. Unfortunately, many agencies lack sufficient resources to compile, conduct quality assurance and control, and make accessible stream temperature data collected through routine monitoring. Yet, pooled data from many sources, even if temporally and spatially inconsistent, can have great value both in the realm of stream temperature...
thumbnail
Inland fisheries are critical for global food security and human well-being. However, fish production may be threatened by changes in climate and land use. Understanding this threat is crucial to effectively manage inland fisheries in the future. To address this need, this project will identify which types of lakes across the globe are most vulnerable to the impacts of climate and land use changes. Lakes will be categorized based on their depth, vulnerability to food insecurity, and vulnerability to water insecurity – variables which can all influence how detrimental climate and land use change will actually be on a lake. This information will be used to predict how inland fisheries production might change under...


map background search result map search result map Impacts of Climate Change and Melting Glaciers on Coastal Ecosystems in the Gulf of Alaska Quantifying Vulnerability of Quaking Aspen Woodlands and Associated Bird Communities to Global Climate Change in the Northern Great Basin Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities Understanding How Warming Temperatures Will Impact Trees and Insects Using Cities as a Proxy Impact of Ocean Warming and Acidification on Growth of Reef-Building Corals USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections NorEaST: A Tool to Understand the Responses of Fish to Changes in Stream Temperature Understanding Habitat Connectivity to Inform Conservation Decisions Evaluating the Use of Models for Projecting Future Water Flow in the Southeast A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Climate Change and Federal Land Management: Assessing Priorities Using a Social Network Approach Implications of Future Shifts in Migration, Spawning, and Other Life Events of Coastal Fish and Wildlife Species Forecasting Future Changes in Sagebrush Distribution and Abundance Understanding the Future of Red-Backed Salamanders as an Indicator of Future Forest Health Protecting Cultural Resources in the Face of Climate Change Climate Change Adaptation for Coastal National Wildlife Refuges Evaluating Future Effects of Climate and Land Use on Fisheries Production in Inland Lakes Moose Health in a Changing Environment Identifying and Evaluating Adaptation Science for Forest Habitats and Bird Communities in the Northeast Identifying the Ecological and Management Implications of Mangrove Migration in the Northern Gulf of Mexico Protecting Cultural Resources in the Face of Climate Change Climate Change Adaptation for Coastal National Wildlife Refuges Quantifying Vulnerability of Quaking Aspen Woodlands and Associated Bird Communities to Global Climate Change in the Northern Great Basin Impacts of Climate Change and Melting Glaciers on Coastal Ecosystems in the Gulf of Alaska Understanding How Warming Temperatures Will Impact Trees and Insects Using Cities as a Proxy Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities Implications of Future Shifts in Migration, Spawning, and Other Life Events of Coastal Fish and Wildlife Species Impact of Ocean Warming and Acidification on Growth of Reef-Building Corals Forecasting Future Changes in Sagebrush Distribution and Abundance USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections Identifying the Ecological and Management Implications of Mangrove Migration in the Northern Gulf of Mexico A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Understanding the Future of Red-Backed Salamanders as an Indicator of Future Forest Health Identifying and Evaluating Adaptation Science for Forest Habitats and Bird Communities in the Northeast NorEaST: A Tool to Understand the Responses of Fish to Changes in Stream Temperature Understanding Habitat Connectivity to Inform Conservation Decisions Climate Change and Federal Land Management: Assessing Priorities Using a Social Network Approach Evaluating the Use of Models for Projecting Future Water Flow in the Southeast Moose Health in a Changing Environment Evaluating Future Effects of Climate and Land Use on Fisheries Production in Inland Lakes