Skip to main content
Advanced Search

Filters: Types: OGC WFS Layer (X) > Tags: {"scheme":"USGS Thesaurus"} (X) > Categories: Data Release - Revised (X)

55 results (153ms)   

View Results as: JSON ATOM CSV
thumbnail
A three-dimensional groundwater flow model using MODFLOW-NWT was developed to evaluate historical and potential stream capture in the lower Humboldt River Basin, Nevada. The Humboldt River Basin is the only river basin that is contained entirely within the state of Nevada. The effect of groundwater pumping on the Humboldt River is not well understood. Tools are needed to determine stream capture and manage groundwater pumping in the Humboldt River Basin. Previous work has demonstrated that the river’s surface-water resource is sensitive to groundwater withdrawals, which have steadily increased since the 1950s for agriculture, municipal, and mining uses. A numerical groundwater flow model was developed for the purpose...
thumbnail
Publicly available geospatial data were identified, collated, and analyzed for a region of karst terrain extending from Albany to Buffalo, New York. A series of geospatial datasets were assembled to determine the location and extent of karstic rock; bedrock geology and depth to bedrock; average water-table configuration; surficial geology; soil type, thickness, and hydraulic conductivity; land cover; and closed depressions in the land surface First release: 2021 Revised: July 2022 (ver. 2.0) Revised: October 2022 (ver. 3.0) Revised: January 2024 (ver. 4.0)
thumbnail
This dataset contains all the layers associated with U.S. Geological Survey (USGS) Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) initiative for the Upper Peninsula Restoration Assessment (UPRA) which aims to identify and rank coastal areas with the greatest potential for wetland habitat restoration. Each layer has a unique contribution to the identification of restorable wetlands. The 7 parameters (Parameter 0: Mask, Parameter 1: Hydroperiod, Parameter 2: Wetland Soils, Parameter 3: Flowlines, Parameter 4: Conservation and Recreation Lands, Parameter 5: Impervious Surfaces, and Parameter 6: Land Use) and Index Composite directly correlate to areas that are recommended for restoration. The dikes, degree...
thumbnail
The U.S. Geological Survey (USGS) developed a regression model for estimating mean August baseflow per square mile of drainage area in cooperation with National Oceanic and Atmospheric Administration (NOAA) to help resource managers assess relative amounts of baseflow in streams with Maine Atlantic Salmon habitat (Lombard and others, 2021). The model was applied to each reach of a stream network derived from select National Hydrography Dataset Plus High-Resolution (NHDPlusHR) data in the State of Maine south of 46º 21′55″ N latitude. The spatial coverage developed from the stream network contains model-estimated mean August baseflow per square mile of drainage area as an attribute of each NHDPlusHR reach. Please...
thumbnail
The U.S. Geological Survey, in collaboration with the Department of Energy, University of Montana, Northern Arapaho Tribe, and Liverpool John Moores University, is studying the interaction of a contaminated groundwater plume enriched in uranium and other trace elements with water, sediment, and biota along a 3 km reach of the Little Wind River in central Wyoming. The source of the contaminants is from a reclaimed uranium mill site near Riverton, Wyoming. This Data Release makes available data collected from June to September, 2016 and August to September, 2017. Data collected during these time periods include: (1) radon, major-ion, and trace-element concentrations in surface-water, groundwater, and pore-water samples;...
thumbnail
Iron oxide-apatite (IOA) deposits of the Adirondack Mountains of New York locally contain elevated REE concentrations (e.g. Taylor and others, 2019). Critical to evaluating resource potential is understanding the genesis of the IOA deposits that host the REE-rich minerals. As part of this effort, the U.S. Geological Survey (USGS) is conducting bedrock geologic mapping, geochronology, geochemistry, and geophysics in the region. Published and ongoing research demonstrates the spatial association of IOA deposits with the Lyon Mountain Granite Gneiss (LMG), so understanding the relationship of the LMG to the IOA deposits is important for resource evaluation—however the age and origin of the LMG remain contentious. As...
thumbnail
Water supply lakes are the primary source of water for many communities in northern and western Missouri. Therefore, accurate and up-to-date estimates of lake capacity are important for managing and predicting adequate water supply. Many of the water supply lakes in Missouri were previously surveyed by the U.S. Geological Survey in the early 2000s (Richards, 2013) and in 2013 (Huizinga, 2014); however, years of potential sedimentation may have resulted in reduced water storage capacity. Periodic bathymetric surveys are useful to update the area/capacity table and to determine changes in the bathymetric surface. From July 2019 to June 2020, the U.S. Geological Survey, in cooperation with the Missouri Department...
Categories: Data Release - Revised; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Bathymetry, Bathymetry and Elevation, Bethany, Caldwell County, Daviess County, All tags...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) recently completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. In association with the report, this data release presents peak-flow frequency analyses for 14 selected streamgages in the Beaverhead River and Clark Fork Basins that were based on methods described by Sando and McCarthy (2018). The results are presented in three child items: a child...
The geochemical data included here were generated as part of a Technical Assistance Agreement between the U.S. Geological Survey (USGS) and Rio Tinto Exploration based in Salt Lake City, Utah. Beginning in November of 2015, we began a project to reanalyze up to 60,000 archived sample splits originally collected as part of the National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) project from selected areas in Arizona, California, Idaho, Montana, Nevada, New Mexico, and Utah. A small amount (approximately 0.25 g) of sieved <75 micron sample material was retrieved from the USGS National Geochemical Sample Archive for geochemical analysis. These samples were analyzed...
thumbnail
This U.S. Geological Survey (USGS) data release (ver. 1.2, April 2022) contains a set of previously unpublished geochemical data from project studies of primitive areas in central Idaho, including the Clear Creek-Upper Big Deer Creek Area, the Salmon River Breaks and Sawtooth Primitive Areas, and the Gospel-Hump Wilderness Area. The purpose of the USGS Idaho Primitive Area studies, conducted from 1966 to 1984, was to describe the geology, determine petrologic and geochemical characteristics, and evaluate the mineral resource potential of these primitive areas and adjacent study areas. In the case of the Idaho Primitive Area study (Cater and others, 1973), the primitive area covers 1,915 square miles; adjacent...
Categories: Data, Data Release - Revised; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Big Deer Creek, Bitterroot National Forest, Blaine County, Boise County, Boise National Forest, All tags...
thumbnail
A key input for probabilistic seismic hazard analysis (PSHA) is geologic slip rate data. Here, we compile all geologic slip rates that are reportedly used in U.S. National Seismic Hazard Map (NSHM) releases from 1996, 2002, 2007, 2008, and 2014. Although a new NSHM was released in 2018, no changes were made in geologic slip rate data used. The geologic slip rates are collated from existing NSHM reports and documentation, and no new data are reported herein. The geologic slip rates are coupled with the fault geometries used in NSHM2014/2018 calculations. The data are presented spatially as a shapefile (SHP), in keyhole markup language (KML) and geoJSON. A readme file accompanies this dataset explaining details of...
thumbnail
Lake-bottom sediment and associated quality-control samples were collected in August 2020 from one coring location (U.S. Geological Survey station 413756070321301, ASHUMET POND, MASHPEE MI-ASHPD-0011) in Ashumet Pond downgradient from a former fire-training area on Cape Cod, Massachusetts. The core was collected to determine if per- and polyfluoroalkyl substances (PFAS) were present in the bottom sediments of a lake known to have elevated concentrations of PFAS in surface water and groundwater (Tokranov and others, 2021), and whether the sediments could act as a continuous source of PFAS to the lake. Processing the sediment core entailed collection of discrete samples at intervals ranging from 1-5 centimeters (cm)...
thumbnail
Current estimates of the magnitude and frequency of floods at gaged and ungaged stream sites are critical for assessing flood risk, delineating flood zones, designing hydraulic structures, and managing flood plains. The Connecticut Department of Transportation collaborated with U.S. Geological Survey (USGS) in a study to improve the flood-frequency estimates in Connecticut and develop regional regression equations for estimating annual exceedance probability discharges at ungaged sites in Connecticut. The results of the study are found in Scientific Investigations Report (http://doi.org/10.3133/sir20205054). This companion data release consists of data compiled and used for the flood-frequency analysis of annual...
thumbnail
This data release contains three data types that could potentially be used to infer spatiotemporal variability in groundwater discharge processes, along with other research and monitoring purposes: 1) Temporally continuous stream channel water temperature and adjacent streambank air temperature time series data (generally starting November 2020) as well as limited temperature data from May to October 2022 from select seeps and springs; 2) Discrete stable isotope data collected from stream water (May 2021, October/November 2021, May 2022, October/November 2022); and 3) Discrete dissolved radon gas data from stream water (collected May 2021 and May 2022). Data were collected at 51 temporary stations installed along...
thumbnail
As part of the California State Water Resources Control Board’s Oil and Gas Regional Monitoring Program , the U.S. Geological Survey collected groundwater and quality-control (QC) samples during September 2016–February 2017 from 14 water-production wells located within a one-mile buffer zone of and in the Fruitvale Oil field, Kern County, California. Samples were analyzed for water-quality indicators, major and minor ions, nutrients, trace elements, volatile organic compounds, naturally occurring radioactive material, geochemical and age-dating tracers, dissolved organic carbon, dissolved standard and hydrocarbon gases, and dissolved noble and atmospheric gases. In total, 235 constituents and water-quality indicators...
thumbnail
This dataset represents the network-adjusted results of relative- and absolute-gravity surveys. Relative-gravity surveys were carried out using a Zero Length Spring, Inc. Burris relative-gravity meter. The effect of solid Earth tides and ocean loading were removed from the data. Instrument drift was removed by evaluating gravity change during repeated measurements at one or more base stations. Absolute-gravity surveys were carried out using a Micro-g LaCoste, Inc. A-10 absolute-gravity meter. Vertical gradients between the different measuring heights of the absolute- and relative-gravity meters were measured using a relative-gravity meter and tripod, and used to correlate the measurements between the two instruments....
thumbnail
This data release provides computed rainfall (rain total, duration, intensity, erosivity and antecedent rainfall) and flow (flow volume, flow-weighted mean concentrations, total loads, and total yields) metrics from monitored precipitation, discharge, and water quality (nutrients and sediment concentrations) data collected at U.S. Geological Survey edge-of-field (EOF) monitoring sites located in five Great Lakes States (Wisconsin, Michigan, Ohio, Indiana, and New York). EOF monitoring sites are installed at the edge of agricultural fields, either on the field surface or using subsurface tiles, where runoff can be intercepted and channeled through monitoring equipment before it enters the natural stream system. These...
thumbnail
This data release provides geochemical, sedimentological, and geochronological data from interbedded fluvial and marsh deposits and radiocarbon dates of the section spanning the last 1500 years from the Pallett Creek paleoseismic site, California. The samples were collected to support paleoenvironmental reconstruction of the site and refine several previous investigations of paleoearthquakes along the San Andreas Fault (Sieh, 1978; Sieh, 1984; Sieh et al., 1989; Biasi and Weldon, 1994; Scharer et al., 2011). Geochemical and sedimentological data include grain size, magnetic susceptibility, dry bulk density, percent total organic matter, and percent total carbonate at contiguous 1 cm spacing and carbon (total C)...
thumbnail
This document provides a summary of surface water-quality, streamflow, and groundwater data collected by the U.S. Geological Survey (USGS) within the Central Pine Barrens (CPB) Region of Suffolk County, New York. The data were collected in cooperation with the Central Pine Barrens Commission and the Town of Brookhaven under a five-year comprehensive water resources monitoring program. The surface water-quality data within the CPB for the 2018 water year (October 1, 2017 to September 30, 2018) includes data from the Carmans River and the Peconic River. The streams were sampled several times throughout the year at seven pre-determined locations. The Carmans River was sampled at five locations: 1) CARMANS RIVER AT...
thumbnail
Managed aquifer recharge is a water-management strategy used to meet water demands during dry periods, or periods of high-water demand, when surface-water supplies are low. One method of managed aquifer recharge uses aquifer systems as subsurface reservoirs or ‘water banks’ to effectively and economically store surface water when surplus is available, and then recover the recharged groundwater to meet water demands during droughts. During these water shortages, increased groundwater pumpage can be used to offset shortfalls in surface-water supplies. Thus, surface-water reservoirs and water banks can be used conjunctively to effectively coordinate the use of groundwater and surface water. Data were compiled for ten...


map background search result map search result map Reanalysis of Selected Archived NURE-HSSR Sediment and Soil Samples from Arizona, California, Idaho, Montana, Nevada, New Mexico, and Utah Peak-flow frequency analyses for 14 selected streamgages in the Beaverhead River and Clark Fork Basins Montana, based on data through water year 2016 (ver. 1.1, September 2020) Hydrologic, biogeochemical, and radon data collected within and adjacent to the Little Wind River near Riverton, Wyoming (ver. 1.1, January 2019) 2018 Hydrologic Data Summary for the Central Pine Barrens Region, Suffolk County, New York (ver. 2.0, February 2024) Flood frequency and source data used in the regional regression analysis of annual peak flows in Connecticut (2020) (ver. 2.0, April 2021) Geochemical Data Release for Idaho Primitive Area, including the contiguous Clear Creek-Upper Big Deer Creek Area, the Salmon River Breaks Primitive Area, the Sawtooth Primitive Area, and adjacent areas, central Idaho (ver. 1.2, June 2022) Geospatial Data to Assess Karst Aquifer Systems Between Albany and Buffalo, New York (ver. 4.0, January 2024) Electron microprobe analyses of feldspars and petrographic, geochemical, and geochronologic data from the Hawkeye Granite Gneiss and Lyon Mountain Granite Gneiss in the Adirondacks of New York (ver. 2.0, May 2023) Water chemistry data for samples collected at groundwater sites near the Fruitvale oil field, September 2016–February 2017, Kern County, California (ver. 2.0, July 2020) Repeat microgravity data from Albuquerque and Bernalillo County, New Mexico, 2016-2021 (ver. 3.0, March 2023) Bathymetric and supporting data for various water supply lakes in northwestern Missouri, 2019 and 2020 (ver. 1.1, September 2021) Nutrient and sediment concentrations, loads, yields, and rainfall characteristics at USGS surface and subsurface-tile edge-of-field agricultural monitoring sites in Great Lakes States (ver. 2.1, September 2023) Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) Upper Peninsula, U.S. (ver. 2.0, January 2024) Compilation of geologic slip rate constraints used in 1996—2014 U.S. National Seismic Hazard Models (ver. 2.0, February 2022) Spatial Coverage for Estimated Baseflow for Streams Containing Endangered Atlantic Salmon in Maine, USA (version 1.1, June 2022) Central Valley Hydrologic Model version 2 (CVHM2): Water Banking for water years 1961-2019 (ver. 2.0, Aug 2023) Concentrations of Per- and Polyfluoroalkyl Substances (PFAS) in Lake-Bottom Sediments of Ashumet Pond on Cape Cod, Massachusetts, 2020 (ver. 2.0, February 2024) Stream Temperature, Dissolved Radon, and Stable Water Isotope Data Collected along Headwater Streams in the Upper Neversink River Watershed, NY, USA (ver. 2.0, April 2023) MODFLOW-NWT Model Used to Evaluate Stream Capture Related to Groundwater Pumping, Lower Humboldt River Basin, Nevada (ver. 1.1, March 2024) Sediment properties, charcoal counts, and radiocarbon dates from the Pallett Creek paleoseismic site, San Gabriel Mountains, California (ver. 2.0, February 2024) Concentrations of Per- and Polyfluoroalkyl Substances (PFAS) in Lake-Bottom Sediments of Ashumet Pond on Cape Cod, Massachusetts, 2020 (ver. 2.0, February 2024) Hydrologic, biogeochemical, and radon data collected within and adjacent to the Little Wind River near Riverton, Wyoming (ver. 1.1, January 2019) Water chemistry data for samples collected at groundwater sites near the Fruitvale oil field, September 2016–February 2017, Kern County, California (ver. 2.0, July 2020) Stream Temperature, Dissolved Radon, and Stable Water Isotope Data Collected along Headwater Streams in the Upper Neversink River Watershed, NY, USA (ver. 2.0, April 2023) Sediment properties, charcoal counts, and radiocarbon dates from the Pallett Creek paleoseismic site, San Gabriel Mountains, California (ver. 2.0, February 2024) Repeat microgravity data from Albuquerque and Bernalillo County, New Mexico, 2016-2021 (ver. 3.0, March 2023) 2018 Hydrologic Data Summary for the Central Pine Barrens Region, Suffolk County, New York (ver. 2.0, February 2024) Bathymetric and supporting data for various water supply lakes in northwestern Missouri, 2019 and 2020 (ver. 1.1, September 2021) MODFLOW-NWT Model Used to Evaluate Stream Capture Related to Groundwater Pumping, Lower Humboldt River Basin, Nevada (ver. 1.1, March 2024) Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) Upper Peninsula, U.S. (ver. 2.0, January 2024) Flood frequency and source data used in the regional regression analysis of annual peak flows in Connecticut (2020) (ver. 2.0, April 2021) Electron microprobe analyses of feldspars and petrographic, geochemical, and geochronologic data from the Hawkeye Granite Gneiss and Lyon Mountain Granite Gneiss in the Adirondacks of New York (ver. 2.0, May 2023) Geochemical Data Release for Idaho Primitive Area, including the contiguous Clear Creek-Upper Big Deer Creek Area, the Salmon River Breaks Primitive Area, the Sawtooth Primitive Area, and adjacent areas, central Idaho (ver. 1.2, June 2022) Geospatial Data to Assess Karst Aquifer Systems Between Albany and Buffalo, New York (ver. 4.0, January 2024) Peak-flow frequency analyses for 14 selected streamgages in the Beaverhead River and Clark Fork Basins Montana, based on data through water year 2016 (ver. 1.1, September 2020) Spatial Coverage for Estimated Baseflow for Streams Containing Endangered Atlantic Salmon in Maine, USA (version 1.1, June 2022) Central Valley Hydrologic Model version 2 (CVHM2): Water Banking for water years 1961-2019 (ver. 2.0, Aug 2023) Nutrient and sediment concentrations, loads, yields, and rainfall characteristics at USGS surface and subsurface-tile edge-of-field agricultural monitoring sites in Great Lakes States (ver. 2.1, September 2023) Reanalysis of Selected Archived NURE-HSSR Sediment and Soil Samples from Arizona, California, Idaho, Montana, Nevada, New Mexico, and Utah Compilation of geologic slip rate constraints used in 1996—2014 U.S. National Seismic Hazard Models (ver. 2.0, February 2022)