Skip to main content
Advanced Search

Filters: Types: OGC WMS Layer (X) > Date Range: {"choice":"year"} (X) > Extensions: OGC Web Service (X)

11 results (52ms)   

View Results as: JSON ATOM CSV
thumbnail
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate three-dimensional hydrodynamics and waves to study salinity intrusion in the Delaware Bay estuary for 2016, 2018, 2021. Salinity intrusion in coastal systems is due in part to extreme events like drought or low-pressure storms and longer-term sea level rise, threatening economic infrastructure and ecological health. Along the eastern seaboard of the United States, approximately 13 million people rely on the water resources of the Delaware River basin, which is actively managed to suppress the salt front (or ~0.52 daily averaged psu line) through river discharge targets. However,...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, Earth Science > Oceans > Salinity/Density > Salinity, Earth Science > Oceans > Sea Surface Topography > Sea Surface Height, Earth Science Services > Models > Weather Research/Forecast Models, All tags...
thumbnail
The GAP National Terrestrial Ecosystems - Ver 3.0 is a 2011 update of the National Gap Analysis Project Land Cover Data - Version 2.2 for the conterminous U.S. The GAP National Terrestrial Ecosystems - Version 3.0 represents a highly thematically detailed land cover map of the U.S. The map legend includes types described by NatureServe's Ecological Systems Classification (Comer et al. 2002) as well as land use classes described in the National Land Cover Dataset 2011 (Homer et al. 2015). These data cover the entire continental U.S. and are a continuous data layer. These raster data have a 30 m x 30 m cell resolution. GAP used the best information available to create the land cover data; however GAP seeks to improve...
Categories: Data; Types: Map Service, OGC WMS Layer; Tags: Alabama, Alaska, Appalachian, Arizona, Arkansas, All tags...
thumbnail
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate three-dimensional hydrodynamics and waves to study salinity intrusion in the Delaware Bay estuary for 2016, 2018, 2021. Salinity intrusion in coastal systems is due in part to extreme events like drought or low-pressure storms and longer-term sea level rise, threatening economic infrastructure and ecological health. Along the eastern seaboard of the United States, approximately 13 million people rely on the water resources of the Delaware River basin, which is actively managed to suppress the salt front (or ~0.52 daily averaged psu line) through river discharge targets. However,...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, Earth Science > Oceans > Salinity/Density > Salinity, Earth Science > Oceans > Sea Surface Topography > Sea Surface Height, Earth Science Services > Models > Weather Research/Forecast Models, All tags...
thumbnail
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate three-dimensional hydrodynamics and waves to study salinity intrusion in the Delaware Bay estuary for 2016, 2018, 2021. Salinity intrusion in coastal systems is due in part to extreme events like drought or low-pressure storms and longer-term sea level rise, threatening economic infrastructure and ecological health. Along the eastern seaboard of the United States, approximately 13 million people rely on the water resources of the Delaware River basin, which is actively managed to suppress the salt front (or ~0.52 daily averaged psu line) through river discharge targets. However,...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, Earth Science > Oceans > Salinity/Density > Salinity, Earth Science > Oceans > Sea Surface Topography > Sea Surface Height, Earth Science Services > Models > Weather Research/Forecast Models, All tags...
thumbnail
The Great Plains Landscape Conservation Cooperative (GPLCC, https://www.fws.gov/science/catalog) is a partnership that provides applied science and decision support tools to assist natural resource managers conserve plants, fish and wildlife in the mid- and short-grass prairie of the southern Great Plains. It is part of a national network of public-private partnerships — known as Landscape Conservation Cooperatives (LCCs, http://www.fws.gov/science/shc/lcc.html) — that work collaboratively across jurisdictions and political boundaries to leverage resources and share science capacity. The Great Plains LCC identifies science priorities for the region and helps foster science that addresses these priorities to support...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the Arkansas Natural Resources Commission, Arkansas Geological Survey, and the Union County Water Conservation Board, has monitored water levels as a part of an ongoing effort to provide information for management of the Sparta-Memphis aquifer. The USGS has produced reports, at various intervals, to describe groundwater conditions in the Sparta-Memphis aquifer. These datasets provide the locations of and groundwater-level altitudes from 306 wells that were used to construct a potentiometric contour surface of the Sparta-Memphis aquifer. Measurements were made from January through May 2013 and represent synoptic conditions. All wells were cased completely in...
thumbnail
Marshes may drown if they are unable to accrete sediment at the rate of sea level rise, but predicting the rate of sediment accretion at different marshes is challenging because many processes (e.g. tidal range, wave frequency) and conditions (e.g. available sediment, vegetation density, shape of the marsh edge) impact it. The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST, Warner and others 2019; Warner and others 2010) model was used to simulate three-dimensional hydrodynamics, waves, and sediment transport on a marsh platform in an idealized domain. The computational grid was 400 (20) cells in the cross-shore (along-shore) directions with 10 vertical sigma layers, and a cross-shore horizontal resolution...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: Earth Science > Oceans > Coastal Processes > Estuaries, Earth Science > Oceans > Coastal Processes > Marshes, Earth Science > Oceans > Coastal Processes > Sediment Transport, Earth Science > Oceans > Coastal Processes > Sedimentation, Hydrology, All tags...
thumbnail
This dataset represents a species habitat distribution map for Allen's Big-eared Bat (Idionycteris phyllotis) within the conterminous United States (CONUS) based on 2001 ground conditions. This habitat map was created by applying a deductive habitat model to remotely-sensed data layers within the species' known range. See Gap Analysis Project Species Habitat Maps for more information regarding model process and user constraints. For species specific model information, see the attached Species Habitat Model Report.
Categories: Data; Types: Map Service, OGC WMS Layer
thumbnail
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate three-dimensional hydrodynamics and waves to study salinity intrusion in the Delaware Bay estuary for 2019. Salinity intrusion in coastal systems is due in part to extreme events like drought or low-pressure storms and longer-term sea level rise, threatening economic infrastructure and ecological health. Along the eastern seaboard of the United States, approximately 13 million people rely on the water resources of the Delaware River basin, which is actively managed to suppress the salt front (or ~0.52 daily averaged psu line) through river discharge targets. However, river discharge...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, Earth Science > Oceans > Salinity/Density > Salinity, Earth Science > Oceans > Sea Surface Topography > Sea Surface Height, Earth Science Services > Models > Weather Research/Forecast Models, All tags...
thumbnail
The Great Plains Landscape Conservation Cooperative (GPLCC, https://www.fws.gov/science/catalog) is a partnership that provides applied science and decision support tools to assist natural resource managers conserve plants, fish and wildlife in the mid- and short-grass prairie of the southern Great Plains. It is part of a national network of public-private partnerships — known as Landscape Conservation Cooperatives (LCCs, http://www.fws.gov/science/shc/lcc.html) — that work collaboratively across jurisdictions and political boundaries to leverage resources and share science capacity. The Great Plains LCC identifies science priorities for the region and helps foster science that addresses these priorities to support...
thumbnail
This dataset represents a species habitat distribution map for Cope's Gray Treefrog (Hyla chrysoscelis) within the conterminous United States (CONUS) based on 2001 ground conditions. This habitat map was created by applying a deductive habitat model to remotely-sensed data layers within the species' known range. See Gap Analysis Project Species Habitat Maps for more information regarding model process and user constraints. For species specific model information, see the attached Species Habitat Model Report.
Categories: Data; Types: Map Service, OGC WMS Layer


    map background search result map search result map Elevation Derivatives for National Applications (EDNA) Aspect for the Great Plains Landscape Conservation Cooperative Elevation Derivatives for National Applications (EDNA) Slope for the Great Plains Landscape Conservation Cooperative (GPLCC) GAP/LANDFIRE National Terrestrial Ecosystems 2011 Cope's Gray Treefrog (Hyla chrysoscelis) aCGTRx_CONUS_2001v1 Habitat Map Allen's Big-eared Bat (Idionycteris phyllotis) mABEBx_CONUS_2001v1 Habitat Map Potentiometric surface dataset of the Sparta-Memphis aquifer in Arkansas, January 2013 - May 2013 (ver. 1.2, June 2021) 3D-hydrodynamic simulations in Delaware Bay (2019) forced with river discharge, tides, subtidal water levels, winds, and waves U.S. Geological Survey simulations of 3D-hydrodynamics in Delaware Bay (2016) U.S. Geological Survey simulations of 3D-hydrodynamics in Delaware Bay (2018) U.S. Geological Survey simulations of 3D-hydrodynamics in Delaware Bay (2021) Idealized COAWST model cases for testing sensitivity of sediment transport and marsh accretion to vegetation, wave, and sediment parameters Idealized COAWST model cases for testing sensitivity of sediment transport and marsh accretion to vegetation, wave, and sediment parameters 3D-hydrodynamic simulations in Delaware Bay (2019) forced with river discharge, tides, subtidal water levels, winds, and waves U.S. Geological Survey simulations of 3D-hydrodynamics in Delaware Bay (2016) U.S. Geological Survey simulations of 3D-hydrodynamics in Delaware Bay (2018) U.S. Geological Survey simulations of 3D-hydrodynamics in Delaware Bay (2021) Potentiometric surface dataset of the Sparta-Memphis aquifer in Arkansas, January 2013 - May 2013 (ver. 1.2, June 2021) Allen's Big-eared Bat (Idionycteris phyllotis) mABEBx_CONUS_2001v1 Habitat Map Elevation Derivatives for National Applications (EDNA) Aspect for the Great Plains Landscape Conservation Cooperative Elevation Derivatives for National Applications (EDNA) Slope for the Great Plains Landscape Conservation Cooperative (GPLCC) Cope's Gray Treefrog (Hyla chrysoscelis) aCGTRx_CONUS_2001v1 Habitat Map GAP/LANDFIRE National Terrestrial Ecosystems 2011