Skip to main content
Advanced Search

Filters: Types: OGC WMS Layer (X) > Tags: {"scheme":"USGS Thesaurus","name":"geomorphology"} (X)

185 results (92ms)   

View Results as: JSON ATOM CSV
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Cape Cod, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMGP, Coastal Erosion, All tags...
thumbnail
The U.S. Geological Survey, in cooperation with Colorado Springs Utilities, has been collecting topographic data annually since 2012 at 10 study areas along Fountain Creek, Colorado. The 10 study areas are located along Fountain Creek between Colorado Springs and the confluence of Fountain Creek and the Arkansas River in Pueblo. This data release presents topographic survey data, Light Detection and Ranging (lidar) survey data, and elevation rasters collected or generated during 2020 as part of that monitoring effort. Topographic survey points were collected using real-time kinematic Global Navigation Satellite Systems (RTK-GNSS). These point data, along with lidar point clouds, were used to generate 2020 digital...
thumbnail
Model archive summary (MAS) describing the development of a suspended-sediment concentration (SSC) surrogate regression model for the Hookton Slough near Loleta, CA water quality station (USGS site ID# 404038124131801). A continuous 15-minute SSC record was computed using this regression model for the period of record (03-04-2016 to 09-10-2019). The computed SSC record can be found on NWIS Web at https://waterdata.usgs.gov/ca/nwis/uv?site_no=404038124131801. The SSC record was used to assess ambient SSC conditions, the availability of suspended sediment to support surface deposition and elevation gain in adjacent salt marshes, and to characterize salt marsh resiliency to climate change impacts in Humboldt Bay, CA.
thumbnail
A series of simple linear regression models were developed for the U.S. Geological Survey (USGS) streamgage at Rice Creek below Highway 8 in Mounds View, Minnesota (USGS station number 05288580). The simple linear regression models were calibrated using streamflow data to estimate suspended-sediment (total, fines, and sands) and bedload. Data were collected during water years 2010, 2011, 2014, 2018, and 2019. The estimates from the simple linear regressions were used to calculate loads for water years 2010 through 2019. The calibrated simple linear regression models were used to improve understanding of sediment transport processes and increase accuracy of estimating sediment and loads for Rice Creek. Two multidimensional...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
This dataset is a polygon shapefile delineating the footprint of bathymetric data collected in October, 2021 for an approximately 500 meter (m) reach of the Kalamazoo River upstream of Plainwell, Michigan (MI). Bathymetric data in the river channel were collected with a single beam sonar and Acoustic Current Doppler Profiler operated along 2 longitudinal transects and 48 cross-sectional transects, respectively.
thumbnail
As part of a collaborative study with the City of Raleigh, North Carolina, the U.S. Geological Survey developed a suite of high-resolution lidar-derived raster datasets for the Greater Raleigh Area, North Carolina, using repeat lidar data from the years 2013, 2015, and 2022. These datasets include raster representations of digital elevation models (DEMs), DEM of difference, the ten most common geomorphons (i.e. geomorphologic feature), lidar point density, and positive topographic openness. Raster footprints vary by year based on extent of lidar data collection. All files are available as Cloud Optimized GeoTIFF, meaning they are formatted to work on the cloud or can be directly downloaded. These metrics have been...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
In 2012, the U.S. Geological Survey (USGS) in cooperation with Colorado Springs Utilities selected 10 reaches or study areas along Fountain Creek between Colorado Springs and the confluence of Fountain Creek at the Arkansas River for annual bed and bank characterization and topographic surveys. The 10 selected study areas are approximately 5 to 20 bank-full channel widths in length. The topographic surveys collected point data of location and elevation in the active channel and along both left and right banks and flood plains. Starting in 2012, USGS personnel have collected topographic survey data annually during the winter, spring, or summer using real-time kinematic Global Navigation Satellite Systems. These point...
thumbnail
In 2012, the U.S. Geological Survey (USGS) Colorado Water Science Center in cooperation with Colorado Springs Utilities selected 10 reaches or study area along Fountain Creek between Colorado Springs and the confluence of Fountain Creek at the Arkansas River for annual bed and bank characterization and topographic surveys. The 10 selected study areas are approximately 5 to 20 bank-full channel widths in length. The topographic surveys collected point data of location and elevation in the active channel and along both left and right banks and flood plains. Historically, the topographic data have been collected exclusively using real-time kinematic Global Navigation Satellite Systems. However, on January 12, 2017,...
thumbnail
In 2012, the U.S. Geological Survey (USGS) in cooperation with Colorado Springs Utilities selected 10 reaches or study areas along Fountain Creek between Colorado Springs and the confluence of Fountain Creek at the Arkansas River for annual bed and bank characterization and topographic surveys. The 10 selected study areas are approximately 5 to 20 bank-full channel widths in length. The topographic surveys collected point data of location and elevation in the active channel and along both left and right banks and flood plains. Starting in 2012, USGS personnel have collected topographic survey data annually during the winter, spring, spring, or summer using real-time kinematic Global Navigation Satellite Systems....


map background search result map search result map Topographic Survey Data of Fountain Creek between Colorado Springs and the Confluence of Fountain Creek at the Arkansas River, Colorado, 2013 Topographic Survey Data of Fountain Creek between Colorado Springs and the Confluence of Fountain Creek at the Arkansas River, Colorado, 2012 Topographic Survey Data from Photogrammetry of Fountain Creek between Colorado Springs and the Confluence of Fountain Creek at the Arkansas River, Colorado, 2017 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2010 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Edwin B. Forsythe NWR, NJ, 2012 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2010 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Monomoy Island, MA, 2013-2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cape Lookout, NC, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Rhode Island National Wildlife Refuge, RI, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Assateague Island, MD & VA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Assawoman Island, VA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Fisherman Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Parramore Island, VA, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Smith Island, VA, 2014 Suspended sediment and bedload data, simple linear regression models, loads, elevation data, and FaSTMECH models for Rice Creek, Minnesota, 2010-2019 Elevation Data from Fountain Creek between Colorado Springs and the Confluence of Fountain Creek at the Arkansas River, Colorado, 2020 (ver 2.0, May 2021) Model Archive Summary for a Suspended-Sediment Concentration Surrogate Regression Model for Station 404038124131801; Hookton Slough near Loleta, CA Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010 Lidar-derived rasters of point density, elevation, and geomorphological features for 2013, 2015, and 2022 for the Greater Raleigh Area, North Carolina Footprint of bathymetry data collected for a Kalamazoo River Reference Reach upstream of Plainwell, Michigan, in 2021 Footprint of bathymetry data collected for a Kalamazoo River Reference Reach upstream of Plainwell, Michigan, in 2021 Suspended sediment and bedload data, simple linear regression models, loads, elevation data, and FaSTMECH models for Rice Creek, Minnesota, 2010-2019 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Fisherman Island, VA, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Smith Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Parramore Island, VA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Edwin B. Forsythe NWR, NJ, 2012 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2010 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2010 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Rhode Island National Wildlife Refuge, RI, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Assateague Island, MD & VA, 2014 Lidar-derived rasters of point density, elevation, and geomorphological features for 2013, 2015, and 2022 for the Greater Raleigh Area, North Carolina Topographic Survey Data of Fountain Creek between Colorado Springs and the Confluence of Fountain Creek at the Arkansas River, Colorado, 2013 Topographic Survey Data of Fountain Creek between Colorado Springs and the Confluence of Fountain Creek at the Arkansas River, Colorado, 2012 Topographic Survey Data from Photogrammetry of Fountain Creek between Colorado Springs and the Confluence of Fountain Creek at the Arkansas River, Colorado, 2017 Elevation Data from Fountain Creek between Colorado Springs and the Confluence of Fountain Creek at the Arkansas River, Colorado, 2020 (ver 2.0, May 2021) DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cape Lookout, NC, 2014