Skip to main content
Advanced Search

Filters: Types: OGC WMS Service (X) > Tags: {"scheme":"http://gcmd.nasa.gov/learn/keywords.html"} (X)

431 results (19ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tags (with Scheme=http://gcmd.nasa.gov/learn/keywords.html)
View Results as: JSON ATOM CSV
thumbnail
The Long-billed Dowitcher is a medium-sized shorebird that commonly breeds on the ArcticCoastal Plain of Alaska. This species nests in higher densities in the western portion of thecoastal plain compared to the east (Johnson et al. 2007). They prefer wet grassy meadows fornesting often showing an affinity for sedge-willow, wet meadow or sedge marsh along drainagesor near ponds (Takekawa and Warnock 2000). Long-billed Dowitchers generally migrate west ofthe Mississippi River and winter primarily along the Pacific and Gulf Coasts of North Americainto Mexico (Takekawa and Warnock 2000). Current population estimate of the North Americanpopulation is 400,000 (Morrison et al. 2006).
thumbnail
The White-rumped Sandpiper is a small shorebird that is a relatively rare breeder in ArcticAlaska. They nest in coastal wetlands between Barrow and Cape Halkett on the Arctic CoastalPlain of Alaska
thumbnail
The Western Sandpiper is one of the most abundant sandpipers in the western hemisphere. InAlaska, the core of its breeding population is in the Yukon-Kuskokwim River Delta. It alsobreeds less commonly in the western portion of the North Slope (Johnson et al. 2007). Thisspecies nests in well-drained moist to upland tundra habitats dominated by dwarf shrubs andtussock grasses (Wilson 1994).
thumbnail
These rasters represent output from the Boreal ALFRESCO (Alaska Frame Based Ecosystem Code) model. Boreal ALFRESCO operates on an annual time step, in a landscape composed of 1 x 1 km pixels, a scale appropriate for interfacing with mesoscale climate and carbon models. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Coverage of this dataset includes much of the state of Alaska (but does exclude Southeastern AK, Kodiak Island, portions of the Alaska Peninsula, and the Aleutian Islands)....
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_CCCMA_CGCM31_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from CCCMA (also CGCM3.1), a third generation coupled global climate model created by the Canadian Centre for Climate Modeling and Analysis. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal...
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_CRU_Historical_annual_1930-1939.tif represents the decade spanning 1930-1939. The data were generated by using the Hamon equation and output from a statistically downscaled version of the Hadley Centre’s CRU TS3.0 observational dataset. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users are reminded that the PET estimates...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...
thumbnail
This map was created by Arctic LCC staff and depicts the general boundaries of the Arctic LCC within Alaska. This map is in PNG format, suitable for presentations.
thumbnail
This map was created by Arctic LCC staff and depicts the general boundaries of the Arctic LCC within Alaska. This map is in PDF format, suitable for printing.
thumbnail
The distribution and abundance of fishes across the Alaska Arctic is not well understood. Better information on fish distribution is needed for habitat assessment and modeling activities and is also important for planning industrial activities. The State of Alaska maintains a fish distribution database for anadromous fish species, however there is currently no analog for resident fish species. The concept behind AquaBase was to fill the information gap for resident fish by design a database that contains information about all fish species. AquaBase does not duplicate information that is already available in other spatial database, but rather ‘rescues’ data from reports that are not readily available.
thumbnail
Average historical annual total precipitation (mm) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 6.0) and CRU TS3.1.01 datasets.
thumbnail
Researchers from the University of Alaska Fairbanks (UAF) willinvestigate glacier-climate interactions within the ArcticNational Wildlife Refuge, including impacts of glacier change onthe downstream aquatic ecosystems. This work builds upon theonly long-term monitoring program of glaciers in Arctic Alaska.
thumbnail
The Imiq Hydroclimate Database houses hydrologic, climatologic, and soils data collected in Alaska and Western Canada from the early 1900s to the present. This database unifies and preserves numerous data collections that have, until now, been stored in field notebooks, on desktop computers, as well as in disparate databases. Synthesizing and analyzing the large-scale hydroclimate characteristics of this important climatic region have been made easier with this searchable database. The data, originally collected in a Microsoft SQL Server 2008 relational database, has been migrated to an open source PostgreSQL and PostGIS environment. The Imiq Data Portal provides public access to portions of the Imiq Hydroclimate...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: ABLATION, ABLATION, ACTIVE LAYER, ACTIVE LAYER, ALBEDO, All tags...
thumbnail
There are many challenges in detecting precipitation trends in Alaska. The most substantial are the small number of observations, inhomogeneities, differences among gridded data sets, and differentiating between long-term trends and decadal variability. Analyzing both station and regional products will increase our understanding of where local trends in precipitation may differ significantly from regional trends, providing key information for developing better downscaled climate projections. These in turn, will provide insight into fine scale heterogeneity in climate change that may be important in determining the stability of key habitat features, such as wetlands and insect avoidance areas. As a by-product of...
thumbnail
The ShoreZone in the Classroom Curriculum Implementation project built upon the ShoreZone in the Classroom Pilot Networking Trip. Educational Consultant Marie Acemah liaised over email and in-person at the North Slope School District (NSBSD) Curriculum Camp in Barrow to develop Curricular Units that make ShoreZone available as an educational tool in NSBSD classrooms. This project resulted in two Units, specifically: 1) Coastal Ecosystems Unit; and 2) Documentary Filmmaking Summer Intensive Proposal. The ShoreZone tool is now available and accessible throughout the NSBSD district. The District and the Ilusagvik College are interested in partnering with ShoreZone to lead for-credit summer documentary film camps in...
thumbnail
LCC funding allowed completion of this BLM initiative to develop a North Slope-wide cover type map and create a crosswalk that integrates all component cover type maps that comprise the larger overall North Slope cover type map.This map is the outcome of a multi-year project to produce a moderate resolution landcover base map for the North Slope of Alaska to serve as a primary base layer for long-term science and planning activities on the North Slope. New Landsat Thematic Mapper (TM) 30 meter resolution landcover maps were produced for the far western arctic, and for the area between the National Petroleum Reserve - Alaska (NPRA) and Arctic National Wildlife Refuge. In the NPRA, an existing land cover map from...
thumbnail
The Beaufort Sea coast in Arctic Alaska and neighboring northern Canada has recently experienced extreme and accelerated climate change, including a dramatic reduction in summer sea ice. Human systems will likely be impacted through changes to oil industry and community infrastructure currently in place along parts of the coast, to habitat availability for harvested species such as caribou, waterbirds, and anadromous fish, to culturally important landscape elements, and to both recreational and subsistence coastal access. We used literature review and structured interviews to 1) identify current, broad interests for ongoing coastal research in the arctic, 2) identify the best mechanisms and format for communicating...


map background search result map search result map A Sense of Place: Inupiat Knowledge of the Coast using Aerial Imagery Imiq - Hydroclimate Database and Data Portal Needs Assessment and Work Plan for Coastal Change Outreach on the Beaufort Sea coast, Alaska Arctic LCC Boundary Map, Satellite Arctic LCC Alaskan Boundary Map - PDF Annual Precipitation Maps - RCP 6.0, Millimeters Arctic LCC Alaskan Boundary Map Aquabase shapefile and tables Stand Age Projections 2080-2089 Active Layer Thickness 1990-1999 Reconciling precipitation trends in Alaska: Comparison of trends in gridded precipitation products and station records Potential Evapotranspiration 1920-1929: CRU Historical Dataset Potential Evapotranspiration 2020-2029: ECHAM5 - A1B Scenario ASDN Terrestrial Invertebrates and Weather Access Database White-rumped Sandpiper Western Sandpiper Glaciers and Rivers in ArcticNWR Factsheet Long-billed Dowitcher Potential Evapotranspiration 2000-2009: CCCMA - A1B Scenario North Slope Land Cover Glaciers and Rivers in ArcticNWR Factsheet Aquabase shapefile and tables A Sense of Place: Inupiat Knowledge of the Coast using Aerial Imagery Needs Assessment and Work Plan for Coastal Change Outreach on the Beaufort Sea coast, Alaska Arctic LCC Alaskan Boundary Map - PDF Arctic LCC Alaskan Boundary Map White-rumped Sandpiper Western Sandpiper Long-billed Dowitcher North Slope Land Cover Imiq - Hydroclimate Database and Data Portal Reconciling precipitation trends in Alaska: Comparison of trends in gridded precipitation products and station records Stand Age Projections 2080-2089 Active Layer Thickness 1990-1999 Potential Evapotranspiration 1920-1929: CRU Historical Dataset Potential Evapotranspiration 2020-2029: ECHAM5 - A1B Scenario Potential Evapotranspiration 2000-2009: CCCMA - A1B Scenario ASDN Terrestrial Invertebrates and Weather Access Database Arctic LCC Boundary Map, Satellite Annual Precipitation Maps - RCP 6.0, Millimeters