Skip to main content
Advanced Search

Filters: Types: Raster (X) > Categories: Project (X)

15 results (29ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The USGS National Climate Change and Wildlife Science Center (NCCWSC), as part of the work of the Interagency Land Management Adaptation Group (ILMAG), initiated a project in 2013 to develop plans for a searchable, public registry on climate change vulnerability assessments. Member agencies from the USGCRP Adaptation Science Work Group, the Association of Fish and Wildlife Agencies (AFWA), and several NGO’s also contributed. Vulnerability assessments are important for identifying resources that are most likely to be affected by climate change and providing insights on why certain resources are vulnerable. Consequently, they provide valuable information for informing climate change adaptation planning. CRAVe allows...
thumbnail
Rainwater Harvesting and Stormwater Research is a priority research area identified by the Arizona Governor’s Blue Ribbon Panel on Water Sustainability, which recommended that universities take the lead to identify regulatory barriers, cost and benefits, water quality issues and avenues for increasing utilization of stormwater and rainwater at the regional, community and individual property level. In an effort to address the priority research area, the University of Arizona will develop a decision support tool to be used by public utilities and agencies to evaluate suitability and cost-effectiveness of rainwater and stormwater capture at various scales for multiple benefits. Data from the City of Tucson, Arizona...
thumbnail
Advancing our mechanistic understanding of ecosystem responses to climate change is critical to improve ecological theories, develop predictive models to simulate ecosystem processes, and inform sound policies to manage ecosystems and human activities. Manipulation of temperature in the field, or the “ecosystem warming experiment,” has proved to be a powerful tool to understand ecosystem responses to changes in temperature. No comprehensive synthesis has been conducted since the last one more than 10 years ago. A new synthetic analysis is critically needed to advance our understanding of ecosystem responses to warming, to highlight experimental artifacts and appropriate interpretations, and to guide development...
thumbnail
Tropical forests contain > 50% of the world’s known species (Heywood 1995), 55% of global forest biomass (Pan et al. 2011), and exchange more carbon (C), water and energy with the atmosphere than any other ecosystem type (e.g., Saugier et al. 2001). Despite their importance, there is more uncertainty associated with predictions of how tropical forests will respond to warming than for any other biome (Randerson et al. 2009). This uncertainty is of global concern due to the large quantity of C cycled by these forests and the high potential for biodiversity loss. Given the importance of tropical forests, decision makers and land managers around the globe need increased predictive capacity regarding how tropical forests...
thumbnail
In the drier, mid- and low-elevation portions of the Southern Rockies LCC, Fremont cottonwood represents the only native vegetation of tall stature, and cottonwood-dominated woodlands provide critical habitat for a large array of neotropical migratory birds and other animals. These woodlands likely dominated alluvial reaches of all streams where a snowmelt-driven spring flood was the major factor driving geomorphic and vegetation dynamics. These woodlands were also among the first habitats to undergo transformation as the regions land and water resources were developed.The PI coauthored a paper (Andersen et al. 2007) on assessing the amount of native Fremont cottonwood forest remaining on floodplains in 26 subbasins...
thumbnail
Geographically Isolated Wetlands (GIWs) occur along gradients of hydrologic and ecological connectivity and isolation, even within wetland types (e.g., forested, emergent marshes) and functional classes (e.g., ephemeral systems, permanent systems, etc.). Within a given watershed, the relative positions of wetlands and open-waters along these gradients influence the type and magnitude of their chemical, physical, and biological effects on downgradient waters. In addition, the ways in which GIWs connect to the broader hydrological landscape, and the effects of such connectivity on downgradient waters, depends largely upon climate, geology, and relief, the heterogeneity of which expands with increasing scale. Developing...
thumbnail
Fibrous erionite, a zeolite mineral, has been designated as a human carcinogen by the World Health Organization and is believed to be the cause of extraordinarily high rates of malignant mesothelioma and other asbestos - related diseases in several villages in Central Turkey. A recent study by the University of Hawaii in collaboration with the U. S. Environmental Protection Agency in Dunn County, North Dakota has demonstrated similar human exposures to fibrous erionite as those in found in Turkey. The source of these exposures is an erionite - bearing volcanic tuff that has been mined, crushed, and used to gravel hundreds of miles of roads. While elevated rates of mesothelioma are not yet apparent in North Dakota,...
thumbnail
By collaborating with water managers and combining climate modeling and paleoclimate methods, the project team will incorporate prediction tools to assess risk of extreme wet/dry climate conditions for the next 10-15 years (i.e. decadal prediction). Our target area is the Wasatch Range Metropolitan Area that includes Salt Lake City one of the largest population centers within the Southern Rockies LCC. We will focus on projecting future water availability and quality with a specific goal for decadal prediction. The project team has partnered with numerous water agencies in the Wasatch Range who have made in-kind contributions towards this project. This partnership guarantees that the results will be disseminated,...
thumbnail
One of the grand challenges of Earth Surface Science and Natural Resource Management lies in the prediction of mass and energy transfer for large watersheds and landscapes. High resolution topography (lidar) datasets show potential to significantly advance our understanding of hydrologic and geomorphic processes controlling mass and energy transfer because they represent features at the appropriate fine scale on which surface processes operate. While lidar datasets have become readily available across the United States, challenges remain in extracting accurate and objective information relevant for hydrologic and geomorphic research, modeling, and prediction, as well as watershed management. We primarily focus our...
thumbnail
This project aims to improve seasonal water supply forecasts on the Upper Rio Grande River basin and, in doing so, help to minimize the substantial costs associated with erroneous forecasts and related sub-optimal allocations of water for surface irrigation, groundwater recharge and endangered specifies management. Erroneous seasonal water supply forecasts in the Upper Rio Grande River basin have a profound impact on water management, agricultural production and economic vitality.The specific goals of this project are to: Develop state-of the art precipitation and snowpack monitoring products through the use of experimental radar, surface observations and land data assimilation systems Improve the spatial and...
Categories: Data, Project; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Raster; Tags: CO-03, Colorado, Colorado, Data Acquisition and Development, Federal resource managers, All tags...
thumbnail
Mercury (Hg) is a serious environmental problem that is impacting ecological and human health on a global scale. However, local and regional processes are largely responsible for producing methylmercury, which drives ecological risk. This is particularly true in western North America where the combination of diverse landscapes, habitat types, climates, and Hg sources may disproportionally impact the region relative to other areas in North America. Even with decades of regional Hg research and monitoring, there is still no holistic synthesis of the spatiotemporal patterns of Hg in abiotic and biotic resources across the region, nor has there been a formal, simultaneous analysis of the landscape, ecological and climatological...
thumbnail
Stream flow in the Colorado River and Dolores River corridors has been significantly modified by water management, and continued flow alteration is anticipated in future decades with projected increases in human water demand. Bottomland vegetation has been altered as well, with invasion of non-native species, increases in wildfire and human disturbance, and currently, rapid shifts in riparian communities due to biological and mechanical tamarisk control efforts. In light of these conditions, land managers are in need of scientific information to support management of vegetation communities for values such as healthy populations of sensitive fish and wildlife species and human recreation. We propose to address these...
thumbnail
Current land use practices have affected ecosystem structure and processes in ways that have degraded delivery of key ecosystem services controlling exchanges of carbon and nitrogen with the atmosphere and surface and groundwater systems. These impacts are observed in the emissions of greenhouse gases (GHG) and N pollution in our nation’s water systems and coastal areas. Improvements in databases of climate, soils, and land use practices in the north central Great Plains (i.e., NCGP: Colorado, Kansas, Wyoming, Nebraska, Montana, South Dakota, and North Dakota) provide a unique opportunity for integration and synthesis of this information on the exchanges of C and N affecting our environmental resources. In addition,...
thumbnail
The timing of breeding is constrained in Arctic ecosystems and small temporal differences in when individuals breed can have large effects on fitness. Arctic ecosystems are generally warming more rapidly than other ecosystems which, for migratory species, can cause an imbalance, or mismatch, between when they have evolved to breed versus when it is optimal to breed environmentally. Geese are abundant herbivores summering in tundra ecosystems, and whose presence has important feedbacks on ecosystem processes. Some goose populations have already exhibited signs that spring vegetation phenology is occurring earlier than individuals are able to breed, with a consequent effect on their reproductive fitness. The magnitude...
thumbnail
Soil water dynamic is a crucial factor for understanding water-limited, arid to semiarid ecosystems (Porporato et al. 2002, Loik et al. 2004, Lauenroth and Bradford 2006), which cover c. 30% of global land area (Peel et al. 2007). The spatial and temporal patterns of available water, i.e., the amount of soil water that is extractable by plants, is a major determinant of aboveground net primary production and plant functional composition (Noy-Meir 1973, Sala et al. 1988, Sala et al. 1997). Climatic conditions including precipitation, temperature and potential evapotranspiration (PET), which are frequently summarized in climate diagrams (Fig. 1a, Walter and Lieth 1967), explain general patterns of soil water availability...


    map background search result map search result map Development of the Climate Registry for the Assessment of Vulnerability (CRAVe): A Searchable, Public Online Tool for Understanding Species and Habitat Vulnerability A GIS-Based Evaluation of Fremont Cottonwood Stand Dynamics in the SRLCC The Influence of Changing Climate on Water Cycling and Terrestrial Water Availability in the Southern Rockies Region Science-Based Riparian Restoration Planning on the Colorado and Dolores Rivers: A Decision Support Tool and Investigation of Habitat Complexity at Tributary Junctions Improving Seasonal Water Supply Predictions and Water Management in the Upper Rio Grande River Basin through use of Enhanced Observations of Snowfall, Snowpack and Physics-Based Modeling Systems WaterSMART: Building Decadal Prediction of Extreme Climate for Managing Water Supply in Intermountain West Utility Guide to Rainwater/Stormwater Harvesting as an Adaptive Response to Climate Change Science-Based Riparian Restoration Planning on the Colorado and Dolores Rivers: A Decision Support Tool and Investigation of Habitat Complexity at Tributary Junctions Improving Seasonal Water Supply Predictions and Water Management in the Upper Rio Grande River Basin through use of Enhanced Observations of Snowfall, Snowpack and Physics-Based Modeling Systems WaterSMART: Building Decadal Prediction of Extreme Climate for Managing Water Supply in Intermountain West A GIS-Based Evaluation of Fremont Cottonwood Stand Dynamics in the SRLCC The Influence of Changing Climate on Water Cycling and Terrestrial Water Availability in the Southern Rockies Region Utility Guide to Rainwater/Stormwater Harvesting as an Adaptive Response to Climate Change Development of the Climate Registry for the Assessment of Vulnerability (CRAVe): A Searchable, Public Online Tool for Understanding Species and Habitat Vulnerability