Skip to main content
Advanced Search

Filters: Types: Shapefile (X) > Tags: {"scheme":"http://geonames.usgs.gov/"} (X)

38 results (184ms)   

View Results as: JSON ATOM CSV
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 0.2-second period with a 10 percent probability of exceedance in 50 years.
thumbnail
This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.05 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 0.2-second period with a 1 percent probability of exceedance in 1 year. The data are for the Western United States and are based on the long-term 2014 National Seismic Hazard Model.
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...
thumbnail
This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.05 degrees in latitude and longitude. It represents the chance of experiencing damaging earthquakes for fixed ground shaking levels that corresponds with MMI = VI. The values are obtained by averaging the probability of experiencing MMI = VI based on a peak ground acceleration value of 0.1155 g for site class D, and the probability of experiencing MMI = VI based on 1.0-second spectral acceleration value of 0.102 g for site class D. The data are for the Western United States and are based on the long-term 2014 National Seismic Hazard Model.
thumbnail
This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.05 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 1 percent probability of exceedance in 1 year. The data are for the Western United States and are based on the long-term 2014 National Seismic Hazard Model.
thumbnail
The U. S. Geological Survey (USGS) makes long-term seismic hazard forecasts that are used in building codes. The hazard models usually consider only natural seismicity; non-tectonic (man-made) earthquakes are excluded because they are transitory or too small. In the past decade, however, thousands of earthquakes related to underground fluid injection have occurred in the central and eastern U.S. (CEUS), and some have caused damage. In response, the USGS is now also making short-term forecasts that account for the hazard from these induced earthquakes. This data set is the declustered seismicity catalog for the Central and Eastern United States short-term hazard model that contains both natural and induced earthquakes.
thumbnail
This maps portrays the spatial potential for damaging earthquake ground shaking quantified as considerable (MMI ≥ VIII) in 100 years. The maps and data are based on the average of the results obtained from peak ground acceleration and 1.0-second horizontal spectral acceleration. Site specific soil factors based on Vs30 shear wave velocities were implemented using a simple topographic proxy technique (Allen and Wald, 2009) and site amplification based on the relationships of Seyhan and Stewart (2014). MMI ≥ VIII is equivalent to peak ground acceleration of 0.40g and 1.0-second horizontal spectral acceleration of 0.50g (Worden et al., 2012). Allen, T.A. and Wald, D.J. 2009,. On the use of high-resolution topographic...
thumbnail
This maps portrays the spatial potential for damaging earthquake ground shaking quantified as slight (MMI ≥ VI) in 100 years. The maps and data are based on the average of the results obtained from peak ground acceleration and 1.0-second horizontal spectral acceleration. Site specific soil factors based on Vs30 shear wave velocities were implemented using a simple topographic proxy technique (Allen and Wald, 2009) and site amplification based on the relationships of Seyhan and Stewart (2014). MMI ≥ VI is equivalent to peak ground acceleration of 0.12g and 1.0-second horizontal spectral acceleration of 0.1g (Worden et al., 2012). Allen, T.A. and Wald, D.J. 2009,. On the use of high-resolution topographic data...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 10 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.05 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 1 percent probability of exceedance in 1 year. The data are for the Central and Eastern United States and are based on the one-year model.
thumbnail
Expected average annual losses from earthquakes are determined by using PAGER's vulnerability functions that are unique to each country. There are significant differences in economic losses between countries, which is indicative of their relative vulnerability to earthquakes.
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 1.0-second period with a 2 percent probability of exceedance in 50 years.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 50 percent probability of exceedance in 50 years.
thumbnail
Expected average annual fatalities from earthquakes are determined by using PAGER's vulnerability functions that are unique to each country. There are significant differences in fatality rates between countries, which is indicative of their relative vulnerability to earthquakes.
thumbnail
Risk-targeted maximum considered earthquake ground acceleration maps (MCER) are for the design of buildings and other structures. The maps are derived from the USGS seismic hazard maps in accordance with the site-specific ground-motion procedures of the NEHRP Recommended Seismic Provisions for New Building and Other Structures and the ASCE Minimum Design Loads for Buildings and Other Structures (also known as the ASCE 7 Standard; ASCE, 2016). The MCER ground motions are taken as the lesser of probabilistic and deterministic values, as explained in the Provisions. The gridded probabilistic and deterministic values for 1.0-second spectral response acceleration are available here.


map background search result map search result map Chance of damage from an earthquake in 2016 based on peak ground acceleration for the Central and Eastern United States Chance of damage from an earthquake in 2016 based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration for the Central and Eastern United States Chance of damage from an earthquake in 2016 based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration for the Western United States Chance of damage from an earthquake in 2016 based on horizontal spectral response acceleration for 1.0-second period for the Central and Eastern United States Chance of damage from an earthquake in 2017 based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration for the Western United States Peak ground acceleration with a 1% probability of exceedance in 1 year for the Central and Eastern United States Peak ground acceleration with a 1% probability of exceedance in 1 year for the Western United States 0.2-second spectral response acceleration (5% of critical damping) with a 1% probability of exceedance in 1 year for the Western United States Declustered Seismicity catalog used in the 2017 one-year seismic hazard forecast for the Central and Eastern United States from induced and natural earthquakes 0.2-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years 1.0-second spectral response acceleration (5% of critical damping) with a 2% probability of exceedance in 50 years Peak ground acceleration with a 50% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 10% probability of exceedance in 50 years Chance of damage from an earthquake in 2017 based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration for the Western United States Chance of damage from an earthquake in 2016 based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration for the Western United States Peak ground acceleration with a 1% probability of exceedance in 1 year for the Western United States 0.2-second spectral response acceleration (5% of critical damping) with a 1% probability of exceedance in 1 year for the Western United States Declustered Seismicity catalog used in the 2017 one-year seismic hazard forecast for the Central and Eastern United States from induced and natural earthquakes Chance of damage from an earthquake in 2016 based on peak ground acceleration for the Central and Eastern United States Chance of damage from an earthquake in 2016 based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration for the Central and Eastern United States Chance of damage from an earthquake in 2016 based on horizontal spectral response acceleration for 1.0-second period for the Central and Eastern United States Peak ground acceleration with a 1% probability of exceedance in 1 year for the Central and Eastern United States Peak ground acceleration with a 50% probability of exceedance in 50 years 1.0-second spectral response acceleration (5% of critical damping) with a 2% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 10% probability of exceedance in 50 years