Skip to main content
Advanced Search

Filters: Date Range: {"choice":"month"} (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers ( Show direct descendants )

568 results (399ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
As part of the State Wildlife Grant Fund, states are required to submit State Wildlife Plans (SWAPs) every 10 years detailing threats to habitats and species and conservation plans. However, incorporating climate change in SWAPs is voluntary, and capacity/expertise limitations at state agencies have resulted in varied and often only partial consideration of climate change impacts. In response, the MW CASC will conduct literature reviews to assess climate stressors and impacts to habitats and key species and to identify relevant adaptation actions for 13 different Level 2/3 EPA Ecoregions contained within the MW CASC area states. This work will provide a foundation for future habitat vulnerability assessments. ...
thumbnail
Cheatgrass began invading the Great Basin about 100 years ago, changing large parts of the landscape from a rich, diverse ecosystem to one where a single invasive species dominates. Cheatgrass dominated areas experience more fires that burn more land than in native ecosystems, resulting in economic and resource losses. Therefore, the reduced production, or absence, of cheatgrass in previously invaded areas during years of adequate precipitation could be seen as a windfall. However, this cheatgrass dieoff phenomenon creates other problems for land managers like accelerated soil erosion, loss of early spring food supply for livestock and wildlife, and unknown recovery pathways. We used satellite data and scientific...
thumbnail
Maintaining the native prairie lands of the Northern Great Plains (NGP), which provide an important habitat for declining grassland species, requires anticipating the effects of increasing atmospheric carbon dioxide (CO2) concentrations and climate change on the region’s vegetation. Specifically, climate change threatens NGP grasslands by increasing the potential encroachment of native woody species into areas where they were previously only present in minor numbers. This project used a dynamic vegetation model to simulate vegetation type (grassland, shrubland, woodland, and forest) for the NGP for a range of projected future climates and relevant management scenarios. Comparing results of these simulations illustrates...
thumbnail
Natural resource managers and researchers often need long-term averages of historical and future climate scenarios for their study area yet may not have the resources to make these summaries. This project will provide high quality, detailed maps of historical and projected future climate and hydrologic conditions for California and a finer scale version for southern California. The project will also assess the feasibility of expanding these reference data to the southwestern US and identify the most suitable online data portals for the public to view and analyze the data in support of local initiatives. The map products can be used to assess the impacts of ongoing climate change and to develop climate adaptation...
thumbnail
In southwestern Colorado, land managers anticipate the impacts of climate change to include higher temperatures, more frequent and prolonged drought, accelerated snowmelt, larger and more intense fires, more extreme storms, and the spread of invasive species. These changes put livelihoods, ecosystems, and species at risk. Focusing on communities in southwestern Colorado’s San Juan and Gunnison river basins, this project will expand opportunities for scientists, land managers, and affected residents to identify actions that can support resilience and adaptation in the face of changing climate conditions. This project builds on the project “Building Social and Ecological Resilience to Climate Change in southwestern...
thumbnail
One of the biggest challenges facing resource managers today is not knowing exactly when, where, or how climate change effects will unfold. To help federal land managers address this need, the North Central CASC has been working with the National Park Service to pioneer an approach for incorporating climate science and scenario planning into NPS planning processes, in particular Resource Stewardship Strategies (RSS). These strategies serve as a long-range planning tool for a national park unit to achieve its desired natural and cultural resource conditions, and are used to guide a park’s full spectrum of resource-specific management plans and day-to-day management activities. To support adaptation planning within...
thumbnail
Climate change is causing an increase in the amount of forested area burned by wildfires in the western U.S. The warm, dry post-fire conditions of the region may limit tree regeneration in some areas, potentially causing a shift to non-forest vegetation. Managers are increasingly challenged by the combined impacts of greater wildfire activity, the significant uncertainty about whether forests will recover, and limited resources for reforestation efforts. Simultaneously, there has been an increased focus on post-fire reforestation efforts as tree planting has become a popular climate change mitigation strategy across the nation. Therefore, with increased interest and need, it is crucial to identify where varying...
thumbnail
Tribal resource managers in the southwest U.S. are facing a host of challenges related to environmental change, including increasing temperatures, longer periods of drought, and invasive species. These threats are exacerbating the existing challenges of managing complex ecosystems. In a rapidly changing environment, resource managers need powerful tools and the most complete information to make the most effective decisions possible. Traditional Ecological Knowledge has enabled Indigenous peoples to adaptively manage and thrive in diverse environments for thousands of years, yet it is generally underutilized and undervalued, particularly in the context of western scientific approaches. Traditional Ecological...
thumbnail
Natural and cultural resource managers across the country have begun to use a tool known as "scenario planning" to help prepare for climate change effects that may unfold in the future. In this process, scientific projections are used to identify different plausible, relevant, and divergent climate conditions for a particular area, and then through a participatory process, scientists and resource managers develop "scenarios" which describe the implications of these different conditions for resources and management. The North Central CASC has been working with the National Park Service (NPS) Climate Change Response Program (CCRP) to encourage and support national parks in incorporating climate science and scenario...
thumbnail
The NC CASC works to communicate the science conducted at the center out to the North Central region through a variety of communication resources such as state specific fact sheets, newsletters, social media and webinars. These communication products aim to connect researchers, managers, and practitioners to usable science, success stories, and solutions for natural and cultural resource management and adaptation under a changing climate. More specifically, the webinar series focuses on ongoing research and practices from the NC CASC network, and feature topics of critical importance to natural resource managers and other stakeholders within the region. To learn more about NC CASC communications, please visit the...
thumbnail
With joint funding from the North Central Climate Science Center (NC CSC) and NASA's Earth Science Applied Sciences Program, the NC CSC supports resource managers and their decision process through its Resource for Vulnerability Assessment, Adaptation and Mitigation Planning (ReVAMP), a collaborative research/planning effort supported by high performance computing and modeling resources. The NC CSC focuses primarily on climate data as input to the ReVAMP. In this project the NASA DEVELOP program was used to evaluate how remote sensing data sets can contribute to the ecological response models that are implemented in the ReVAMP system. This work demonstrates the utility of remote sensing in vulnerability assessment...
thumbnail
Federal land managers need an adaptive management framework to accommodate changing conditions and that allows them to effectively link the appropriate science to natural resource management decision-making across jurisdictional boundaries. FRAME-SIMPPLLE is a collaborative modeling process designed to accomplish this goal by coupling the adaptive capabilities of the SIMPPLLE modeling system with accepted principles of collaboration. The two essential components of the process are FRAME (Framing Research in support of the Adaptive Management of Ecosystems), which creates a collaborative problem-solving environment, and SIMPPLLE (SIMulating Patterns and Processes at Landscape Scales), which is a vegetation dynamics...
thumbnail
Future climate conditions in the Upper Mississippi River Basin are projected to include many more extreme precipitation events. These intense periods of rain can lead to flooding of the Mississippi River itself, as well the small streams and rivers that feed it. This flooding presents a challenge for local communities, farmers, small businesses, river users, and the ecosystems and wildlife in the area. To reduce the damage done by these extreme rainfall events, ‘natural solutions’ are often helpful. This might include preserving forests and grasslands to absorb rainwater before it arrives at streams or restoring wetlands to slow and clean runoff water. For river and natural resource managers to adapt to future climate...
thumbnail
The Midwest has experienced some of the costliest flooding events in U.S. history, including many billions of dollars during the past decade alone. The Midwest’s susceptibility to flooding has been exacerbated by a long-term increase in total precipitation and extreme rainfalls, with the 2010s being the region’s wettest decade on record Climate models strongly indicate that these recent trends will continue, such that the warming Midwest will experience wetter winters and springs, shortened snow seasons, and extreme year-round precipitation in the future. Despite this high level of confidence in climate trends, there is limited knowledge of how these will translate to flood likelihood and the associated societal...
thumbnail
The 2017 fire season in California was highly unusual with its late seasonal timing, the areal extent it burned, and its devastation to communities. These fires were associated with extreme winds and were potentially also influenced by unusually dry conditions during several years leading up to the 2017 events. This fire season brought additional attention and emphasized the vital need for managers in the western U.S. to have access to scientific information on when and where to expect dangerous fire events. Understanding the multiple factors that cause extreme wildfire events is critical to short and long-term forecasting and planning. Seasonal climate measures such as temperature and precipitation are commonly...
thumbnail
Streamflow in the Colorado River is heavily influenced by high-elevation snowpack. Warming temperatures in spring can reduce snow-fed flows, with serious implications for the water supplies that support communities and wildlife. While it is already well-known that precipitation has a significant influence on river flow, recent observations suggest that temperature and the amount of water in soil may also influence streamflow. In the face of a changing climate, it is important that resource managers understand how factors such as changing temperatures and precipitation will affect this vital water source. To address this need, researchers are examining records of streamflow, temperature, soil moisture, and precipitation...
thumbnail
Scientists, planners, policy makers and other decision-makers in the South Central U.S. want to understand the potential impacts of changes in climate, precipitation, and land-use patterns on natural and cultural resources. Though the potential impacts of climate change can be modeled to help decision-makers plan for future conditions, these models rarely incorporate changes in land-use that may occur. Climate change and land-use change are often linked, as shifts in precipitation and temperature can alter patterns in human land-use activities, such as agriculture. This project sought to address this gap by developing new software tools that enable stakeholders to quickly develop custom, climate-sensitive land-use...
thumbnail
Pollinator restoration requires information about what species to plant and when to plant them to ensure food sources are available throughout the periods when pollinators are active. Changes in climate, including earlier spring warming and warmer fall temperatures, may cause flowering to become out of sync with pollinator activity. When restoring land to support pollinators, managers are challenged to select a mix of species that support pollinators of concern throughout their periods of activity. Existing planting tools have several disadvantages such as, their usability is location specific, they are virtually non-existent for the South Central region, and they do not often account for future changes in plant...
thumbnail
In the Western U.S., approximately 65% of the water supply comes from forested regions with most of the water that feeds local rivers coming from snowmelt that originates in mountain forests. The Rio Grande headwaters (I.e. the primary water generating region of the Rio Grande river) is experiencing large changes to the landscape primarily from forest fires and bark beetle infestations. Already, 85% of the coniferous forests in this region have been affected by the bark beetle, and projections indicate greater changes will occur as temperatures increase. In this area, most of the precipitation falls as snow in the winter, reaches a maximum depth in the late spring, and melts away due to warmer temperatures by early...
thumbnail
Wildfire, drought, and insects are reshaping forests in the Western United States in a manner that is being exacerbated by warming temperatures. Disturbance events such as these can significantly alter the amount of land that is covered by forest in an area or region. Consequently, changes in forest cover from disturbance can impact water runoff conditions leading to dangerous flooding, erosion, and water quality issues. These events can be costly for society. In response, many land managers are using forest thinning and prescribed burning practices to reduce disturbance impacts, especially those that are caused by high-severity wildfire. In contrast to the wealth of research on the advantages of forest thinning...


map background search result map search result map Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Using a Collaborative Modeling Approach to Explore Climate and Landscape Change in the Northern Rockies and Inform Adaptive Management Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions Regional Short- and Long-term Climate Impacts on Northern Rocky Mountain and Great Plains Ecosystems Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Building a Decision-Support Tool for Assessing the Impacts of Climate and Land Use  Change on Ecological Processes Building Social and Ecological Resilience to Climate Change in Southwestern Colorado: Phase 2 Preventing Extreme Fire Events by Learning from History: The Effects of Wind, Temperature, and Drought Extremes on Fire Activity Refining Guidance for Incorporating Climate Science and Scenario Planning into National Park Service Resource Stewardship Strategies Exploring the Past to Plan for the Future: Integrating Indigenous Knowledge and Paleoperspectives to Inform Climate Change Adaptation Science to Inform Post-fire Conifer Regeneration and Reforestation Strategies Under Changing Climate Conditions Supporting the National Park Service in Climate Adaptation Planning Estimating the Future Effects of Forest Disturbance on Snow Water Resources in a Changing Environment Time to Restore: Using a Community Based Approach to Identify Key Plant Species for Pollinator Restoration Developing Products to Increase Climate Science Communication Workshop: Natural Solutions to Ecological and Economic Problems Caused by Extreme Precipitation Events in the Upper Mississippi River Basin The Combined Effects of Seasonal Climate and Extreme Precipitation on Flood Hazard in the Midwest The Role of Forest Structure in Regulating Water Availability and Implications for Natural Resources and Ecosystem Function State Wildlife Action Planning in the Midwest Rendering High-Resolution Hydro-Climatic Data for Southern California Refining Guidance for Incorporating Climate Science and Scenario Planning into National Park Service Resource Stewardship Strategies Estimating the Future Effects of Forest Disturbance on Snow Water Resources in a Changing Environment Building Social and Ecological Resilience to Climate Change in Southwestern Colorado: Phase 2 Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future The Role of Forest Structure in Regulating Water Availability and Implications for Natural Resources and Ecosystem Function Preventing Extreme Fire Events by Learning from History: The Effects of Wind, Temperature, and Drought Extremes on Fire Activity Rendering High-Resolution Hydro-Climatic Data for Southern California Exploring the Past to Plan for the Future: Integrating Indigenous Knowledge and Paleoperspectives to Inform Climate Change Adaptation Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions Workshop: Natural Solutions to Ecological and Economic Problems Caused by Extreme Precipitation Events in the Upper Mississippi River Basin The Combined Effects of Seasonal Climate and Extreme Precipitation on Flood Hazard in the Midwest Science to Inform Post-fire Conifer Regeneration and Reforestation Strategies Under Changing Climate Conditions Building a Decision-Support Tool for Assessing the Impacts of Climate and Land Use  Change on Ecological Processes State Wildlife Action Planning in the Midwest Time to Restore: Using a Community Based Approach to Identify Key Plant Species for Pollinator Restoration Using a Collaborative Modeling Approach to Explore Climate and Landscape Change in the Northern Rockies and Inform Adaptive Management Regional Short- and Long-term Climate Impacts on Northern Rocky Mountain and Great Plains Ecosystems Supporting the National Park Service in Climate Adaptation Planning Developing Products to Increase Climate Science Communication